Prove that $||f+g||_{\infty} = ||f||_{\infty} + ||g||_{\infty}$ iff either one of $f$ and $g$ is $0$ a.e., or $A_f \cap A_g \neq \varnothing$ and for some $\{x_n\}_{n \in \mathbb{N}} \subset A_f \cap A_g$, there exists $\lambda>0$ such that $b=\lambda \, a$, where $f(x_n) \to a$ and $g(x_n) \to b$.
Here, we set $A_f=\{\{x_n\}_{n \in \mathbb{N}}\}$ where $\{x_n\}_{n \in \mathbb{N}} \subset X$ such that $|f(x_n)| \to ||{f}||_{\infty}$.
I have proved the if part, but still doubtful about the only if part.