Another way to get the desired result is via Perron-Frobenius Theory and with a little cleverness we get Taussky's refinement of Gerschgorin Discs as a corollary.
$A:=\begin{bmatrix}
B & -I & 0 & \dots& 0 \\
-I & B & -I & \ddots & \vdots\\
0 & -I & \ddots & \ddots & 0\\
\vdots & \ddots & \ddots & \ddots & -I\\
0 & \dots & 0& - I & B \\
\end{bmatrix}$
notice that $A$ is irreducible / represents a single communicating class in an underlying (possibly weighted and directed) graph
Direct Argument
consider $A':=-\big(A-4I\big)$
now $A'$ has maximum row sum of $4$ and minimum row sum of $2$. Since $A'$ is irreducible and real non-negative we may apply Perron-Frobenius Theory to observe that $2\lt \lambda_\text{Perron} \lt 4$
Being symmetric, $\lambda_\text{Perron} = \sigma_{max} = \Big\Vert A'\Big\Vert_2= \Big\Vert -A'\Big\Vert_2$
and since $-A' = A - 4I\implies A=-A'+4I$, then for any $\big \Vert \mathbf x\big \Vert_2=1$ we have
$\min \mathbf x^TA\mathbf x$
$= \min \Big\{\mathbf x^T\big(-A'+4I\big)\mathbf x\Big\}$
$= \min\Big\{ \mathbf x^T\big(-A'\big)\mathbf x+\mathbf x^T\big(4I\big)\mathbf x\Big\}$
$\geq \min\Big\{ \mathbf x^T\big(-A'\big)\mathbf x\Big\}+ \min\Big\{ \mathbf x^T\big(4I\big)\mathbf x\Big\}$
$= - \max\Big\{ \mathbf x^T\big(A'\big)\mathbf x\Big\}+ 4$
$\gt -4 +4$
$=0$
$\implies A \succ \mathbf 0$
Optional Second
$\text{Gerschgorin Discs & Perron-Frobenius Theory} \implies \text{Taussky's refinement of G-Discs}$
In words, the refinement says for any Weakly Diagonally Dominant irreducible $A$ where the dominance is strict in at least one row
$\det\big(A\big ) \neq 0$
arguing by contradiction, suppose $\det\big(A\big )=0$.
Now left multiply by invertible diagonal matrix $D$ where $d_{k,k} = -(a_{k,k})^{-1}$ (and we know $a_{k,k}\neq 0$, why?). In other words $D:=-\big(I\circ A\big)^{-1}$. Note that $D$ preserves rank, irreducibility and the diagonal dominance structure.
Since $(DA)$ has its diagonal homogenized to consist solely of $-1$'s, let us write $C-I=(DA)$
$\det\big(C-I\big)=\det\big(DA\big)=\det\big(A\big)=0\implies$ there is some $\mathbf x \neq \mathbf 0$ such that
$\big(C-I\big)\mathbf x = \mathbf 0\implies C\mathbf x = \mathbf x \implies \lambda_\text{max modulus}\Big(C\Big)\geq 1$
but
$\lambda_\text{max modulus}\Big(C\Big) \leq \lambda_\text{max modulus}\Big(\big \vert C\big \vert \Big) \lt 1$
which is a contradiction.
notes:
(i.) $\big \vert C\big \vert$ denotes $C$ with each element replaced by its modulus. The inequality is proven here $\rho(B) \leq \rho(|B|)$, where $\rho$ is the spectral radius
(ii.) The second inequality follows because $\big\vert C\big \vert$ is irreducible and substochastic and strictly so in at least one row. So $\big \vert C\big \vert$ cannot have an eigenvalue of 1, by standard Markov chain arguments or directly applying Perron-Frobenius Theorem.