Start with the interval $[0, 2]$ and glue the points $0, 1$ and $2$. Describe the equivalence relation $\mathcal{R}$ encoding this gluing and let $X = [0, 2]/\mathcal{R}$. Describe an embedding of $X$ in $\mathbb R^2$.
Equivalence relation is \begin{align*} x \mathcal{R}y \Leftrightarrow \begin{cases} x=y \\ x, y \in \{0, 1, 2\}. \end{cases} \end{align*}
It is easy to see that $X$ is homeomorphic to the double circle. But how to describe the embedding?