$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\on}[1]{\operatorname{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Note that $\ds{{k - j \choose j} = 0}$ when
$\ds{j > {k \over 2}}$: The sum can be performed
$\ds{\mbox{" up to $\ds{+\infty"}$}}$:
\begin{align}
{\cal N}\pars{k,n} & \equiv \bbox[5px,#ffd]{%
\sum_{j = 0}^{k/2}{n \choose k - j}{k - j \choose j}}
\\[5mm] & =
\sum_{j = -\infty}^{0}{n \choose k + j}
{k + j \choose -j}
\\[5mm] & =
\sum_{j = -\infty}^{k}{n \choose j}
{j \choose k - j} =
\sum_{j = 0}^{\infty}{n \choose j}{j \choose k - j}
\\[5mm] & =
\sum_{j = 0}^{\infty}{n \choose j}\bracks{z^{k - j}}
\pars{1 + z}^{j}
\\[5mm] & =
\bracks{z^{k}}\sum_{j = 0}^{\infty}{n \choose j}
\bracks{z\pars{1 + z}}^{j}
\\[5mm] & =
\bracks{z^{k}}\pars{1 + z + z^{2}}^{n}
\\[5mm] & =
\bracks{z^{k}}{1 \over
\bracks{1 -2\pars{\color{red}{-1/2}}z + z^{2}}
^{\color{red}{-n}}}
\\[5mm] & =
\sum_{j = 0}^{\infty}\on{C}_{j}^{\color{red}{-n}}\,
\pars{\color{red}{-{1 \over 2}}}z^{j}
\end{align}
$\ds{C_{j}^{\pars{\alpha}}}$ is a
Gegenbauer Polynomial.
$$
\implies \bbx{{\cal N}\pars{k,n} =
C_{k}^{\pars{\color{red}{-n}}}\,
\pars{\color{red}{-{1 \over 2}}}} \\
$$
- $\ds{{\cal N}\pars{k,n} = 0}$ when $\ds{k \geq 2n + 1}$.
- $\ds{{\cal N}\pars{k,n} =
{\cal N}\pars{k,n - k}}$.

Plot of $\ds{{\cal N}\pars{k,10}}$: