Solving $$x^4 + 4 a x^3 + 6 x^2 + 4 a x + 1 = 0$$
Divide all terms by $x^2$
$$x^2+4ax+6+\frac{4a}{x}+\frac{1}{x^2}=0$$
Osserve that we can write the previous equation as
$$\left(x^2+\frac{1}{x^2}+2\right)+4a\left(x+\frac{1}{x}\right)+4=0$$
That is
$$\left(x+\frac{1}{x}\right)^2+4a\left(x+\frac{1}{x}\right)+4=0$$
Set $w=x+\frac{1}{x}$. The equation becomes
$$w^2+4aw+4=0$$
Solutions are
$$w_1=-2a-2 \sqrt{a^2-1};\;w_2=-2a+2 \sqrt{a^2-1}$$
Bringing beack the $x$ we have the equations
$$x+\frac{1}{x}=-2a-2 \sqrt{a^2-1};\;x+\frac{1}{x}=-2a+2 \sqrt{a^2-1}$$
Reordering etc
$$x^2 + \left(2a+2 \sqrt{a^2-1}\right)x+1=0;\;x^2 + \left(2a-2 \sqrt{a^2-1}\right)x+1=0$$
Whose solutions are
$$x_1=-a-\sqrt{a^2-1}-\sqrt{2 a^2-2+2 a\sqrt{a^2-1} };\;\\x_2=-a-\sqrt{a^2-1}+\sqrt{2 a^2-2+2 a\sqrt{a^2-1}};\;\\x_3=-a+\sqrt{a^2-1}-\sqrt{2 a^2-2-2 a\sqrt{a^2-1} };\;\\x_4=-a+\sqrt{a^2-1}+\sqrt{2 a^2-2-2 a\sqrt{a^2-1} }$$