Consider $\newcommand\quotient[2]{{^{\Large #1}}/{_{ \Large #2}}} R = \quotient{\mathbb{Z}}{\langle 12 \rangle}$, $\mathfrak{p} = \quotient{\langle 2 \rangle}{\langle 12 \rangle} = \{0, 2, 4, 6, 8, 10\}$ and $U = R \setminus \mathfrak{p} = \{1, 3, 5, 7, 9, 11\}$. We want to compute the localization $U^{-1} R$ of $R$ at $U$.
According to the following questions, we can also construct $U^{-1} R$ as $\quotient{R[x_s \ : \ s \ \in \ U]}{\langle s x_s - 1 \ : \ s \ \in \ U\rangle}$.
This means that we have the following isomorphisms:
$$
\begin{array}{cl}
& \{1, 3, 5, 7, 9, 11\}^{-1} \left(\quotient{\mathbb{Z}}{\langle 12 \rangle}\right) \\
\cong & \quotient{\left(\quotient{\mathbb{Z}}{\langle 12 \rangle}\right)[x_1, x_3, x_5, x_7, x_9, x_{11}]}{\langle x_1 - 1, 3x_3 - 1, 5x_5 - 1, 7x_7 - 1, 9x_9 - 1, 11x_{11} - 1 \rangle} \\
\cong & \quotient{\mathbb{Z}[x_1, x_3, x_5, x_7, x_9, x_{11}]}{\langle 12, x_1 - 1, 3x_3 - 1, 5x_5 - 1, 7x_7 - 1, 9x_9 - 1, 11x_{11} - 1 \rangle} \\
\cong & \quotient{\mathbb{Z}[x_3, x_5, x_7, x_9, x_{11}]}{\langle 12, 3x_3 - 1, 5x_5 - 1, 7x_7 - 1, 9x_9 - 1, 11x_{11} - 1 \rangle} \\
\end{array}
$$
But now, consider the ideals
$$
I = \langle 12, 3x_3 - 1, 5x_5 - 1, 7x_7 - 1, 9x_9 - 1, 11x_{11} - 1 \rangle
$$
and
$$
J = \langle 4, x_3 - 3, x_5 - 1, x_7 - 3, x_9 - 1, x_{11} - 3 \rangle
$$
of $\mathbb{Z}[x_3, x_5, x_7, x_9, x_{11}]$. We claim that $I = J$.
Indeed, we have:
- $4 = 4 - 12x_3 + 12x_3 = 4(1 - 3x_3) + 12x_3 \in I$
- $x_3 - 3 = 9x_3 - 3 - 8x_3 = 3(3x_3 - 1) - 4(2x_3) \in I$
- $x_5 - 1 = 5x_5 - 1 - 4x_5 \in I$
- $x_7 - 3 = 21x_7 - 3 - 20x_7 = 3(7x_7 - 1) - 4(5x_7) \in I$
- $x_9 - 1 = 9x_9 - 1 - 8x_9 = 9x_9 - 1 - 4(2x_9) \in I$
- $x_{11} - 3 = 33x_{11} - 3 - 32x_{11} = 3(11x_{11} - 1) - 4(8x_{11}) \in I$
This shows that $J \subseteq I$.
On the other hand, we also have:
- $12 = 3 \cdot 4 \in J$
- $3x_3 - 1 = 3x_3 - 9 + 8 = 3(x_3 - 3) + 4 \cdot 2 \in J$
- $5x_5 - 1 = 5x_5 - 5 + 4 = 5(x_5 - 1) + 4 \in J$
- $7x_7 - 1 = 7x_7 - 21 + 20 = 7(x_7 - 3) + 4 \cdot 5 \in J$
- $9x_9 - 1 = 9x_9 - 9 + 8 = 9(x_9 - 1) + 4 \cdot 2 \in J$
- $11x_{11} - 1 = 11x_{11} - 33 + 32 = 11(x_{11} - 3) + 4 \cdot 8 \in J$
This shows that $I \subseteq J$. Hence $I = J$ and we may continue our calculation:
$$
\begin{array}{cl}
& \quotient{\mathbb{Z}[x_3, x_5, x_7, x_9, x_{11}]}{\langle 12, 3x_3 - 1, 5x_5 - 1, 7x_7 - 1, 9x_9 - 1, 11x_{11} - 1 \rangle} \\
\cong & \quotient{\mathbb{Z}[x_3, x_5, x_7, x_9, x_{11}]}{\langle 4, x_3 - 3, x_5 - 1, x_7 - 3, x_9 - 1, x_{11} - 3 \rangle} \\
\cong & \quotient{\mathbb{Z}}{\langle 4 \rangle} \\
\end{array}
$$
Putting everything together, we obtain:
$$
\{1, 3, 5, 7, 9, 11\}^{-1} \left(\quotient{\mathbb{Z}}{\langle 12 \rangle}\right) \cong \quotient{\mathbb{Z}}{\langle 4 \rangle}
$$
The following questions are similar: