Let $R = \mathbb Z/6 \mathbb Z$ and let $S=\{1,2,4\}$. Show $ S^{-1}R \cong \mathbb Z/3 \mathbb Z $.
I understand that in $S^{-1}R$ the elements of $S$ must be invertible but I'm not getting a way to prove above isomorphism. Any ideas?
Let $R = \mathbb Z/6 \mathbb Z$ and let $S=\{1,2,4\}$. Show $ S^{-1}R \cong \mathbb Z/3 \mathbb Z $.
I understand that in $S^{-1}R$ the elements of $S$ must be invertible but I'm not getting a way to prove above isomorphism. Any ideas?
We want to find $(\mathbb{Z}/6\mathbb{Z})_2$. Now $$(\mathbb{Z}/6\mathbb{Z})_2\cong(\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})_2\cong (\mathbb{Z}/3\mathbb{Z})_2\times(\mathbb{Z}/2\mathbb{Z})_2\cong \mathbb{Z}/3\mathbb{Z}.$$ In the last step $(\mathbb{Z}/2\mathbb{Z})_2\cong 0$ because we are inverting $0$ and $(\mathbb{Z}/3\mathbb{Z})_2\cong \mathbb{Z}/3\mathbb{Z}$ because we are inverting something which is already invertible.
Answer to comment: take $M,N$ two $A$-modules, $S\subseteq A$ multiplicative. Now $$S^{-1}(M\oplus N)\cong (M\oplus N)\otimes S^{-1}A\cong (M\otimes S^{-1}A)\oplus (N\otimes S^{-1}A)\cong S^{-1}M\oplus S^{-1}N.$$ Notice that $\oplus$ and $\times$ are the same since we are dealing with a finite number of modules.
If you don't know about tensor products yet, just show that the natural map $$S^{-1}(M\oplus N)\to S^{-1}M\oplus S^{-1}N$$ given by $\frac{(m,n)}{s} \mapsto (\frac{m}{s},\frac{n}{s})$ is a well-defined isomorphism of $A$-modules.
Overkill but:
So the only remaining possibility is $F_3=\mathbb Z/3\mathbb Z$.
According to the following questions, we can also construct $S^{-1} R$ as $\newcommand\quotient[2]{{^{\Large #1}}/{_{ \Large #2}}} \quotient{R[x_s \ : \ s \ \in \ S]}{\langle s x_s - 1 \ : \ s \ \in \ S\rangle}$.
This means that we have the following isomorphisms: $$ \begin{array}{rcl} \{1, 2, 4\}^{-1} \left(\quotient{\mathbb{Z}}{\langle 6 \rangle}\right) & \cong & \quotient{\left(\quotient{\mathbb{Z}}{\langle 6 \rangle}\right)[x_1, x_2, x_4]}{\langle x_1 - 1, 2x_2 - 1, 4x_4 - 1\rangle} \\ & \cong & \quotient{\left(\quotient{\mathbb{Z}}{\langle 6 \rangle}\right)[x, y, z]}{\langle x - 1, 2y - 1, 4z - 1\rangle} \\ & \cong & \quotient{\mathbb{Z}[x, y, z]}{\langle 6, x - 1, 2y - 1, 4z - 1\rangle} \\ & \cong & \quotient{\mathbb{Z}[y, z]}{\langle 6, 2y - 1, 4z - 1\rangle} \\ \end{array} $$ But now, consider the ideals $I = \langle 6, 2y - 1, 4z - 1\rangle$ and $J = \langle 3, y - 2, z - 1 \rangle$ of $\mathbb{Z}[y, z]$. We claim that $I = J$.
Indeed, we have:
This shows that $J \subseteq I$.
On the other hand, we also have:
This shows that $I \subseteq J$. Hence $I = J$ and we may continue our calculation: $$ \begin{array}{rcl} \quotient{\mathbb{Z}[y, z]}{\langle 6, 2y - 1, 4z - 1\rangle} & \cong & \quotient{\mathbb{Z}[y, z]}{\langle 3, y - 2, z - 1 \rangle} \\ & \cong & \quotient{\mathbb{Z}}{\langle 3 \rangle} \\ \end{array} $$ Putting everything together, we obtain: $$ \{1, 2, 4\}^{-1} \left(\quotient{\mathbb{Z}}{\langle 6 \rangle}\right) \cong \quotient{\mathbb{Z}}{\langle 3 \rangle} $$ The following questions are similar: