To explicitly build up a (nontrivial) semidirect product $\mathbb Z_3\stackrel{\varphi}{\ltimes}\mathbb Z_{7}$, we must send $0$ to the identity map of $\mathbb Z_{7}$, say $Id_{\mathbb Z_{7}}$, and $1$ and $2$ to two distinct automorphisms of $\mathbb Z_{7}$ of order $3$$^\dagger$, say $\varphi_1$ and $\varphi_2$, such that $Id_{\mathbb Z_{7}}(=$ $\varphi_0=$ $\varphi_{1+2})=$ $\varphi_1\varphi_2$. Since $\operatorname{Aut}(\mathbb Z_{7})$ acts transitively on the set $X$ of the generators of $\mathbb Z_{7}$, the only option is:
\begin{alignat}{1}
&\varphi_1(0)=0,\space\space\space{\varphi_1}_{|X} = (1,2,4)(3,6,5) \\
&\varphi_2(0)=0,\space\space\space{\varphi_2}_{|X} = (1,4,2)(3,5,6) \\
\tag1
\end{alignat}
This can be easily generalized to every semidirect product $\mathbb Z_3\stackrel{\varphi}{\ltimes}\mathbb Z_{p}$, where $p$ is a prime such that $3\mid p-1$$^{\dagger\dagger}$. Since $(\operatorname{Aut}(\mathbb Z_p)\cong)\mathbb Z_p^\times$ is cyclic of order $p-1$, it has exactly one subgroup of order $3$, namely exactly two elements of order $3$, say $x$ and $x^2$. Therefore, $(1)$ generalizes to:
\begin{alignat}{1}
&\varphi_1(0)=0,\space\space\space{\varphi_1}_{|X} = (1,x,x^2)(i_2,i_2x,i_2x^2)\dots(i_k,i_kx,i_kx^2) \\
&\varphi_2(0)=0,\space\space\space{\varphi_2}_{|X} = (1,x^2,x)(i_2,i_2x^2,i_2x)\dots(i_k,i_kx^2,i_kx) \\
\tag2
\end{alignat}
where $k:=\frac{p-1}{3}$ and, iteratively, $i_1:=1$ and $i_{j+1}:=\min\{X\setminus\bigcup_{l=1}^j\{i_l,i_lx,i_lx^2\}\}$ for $j=1,\dots,k-1$.
Edit. This can be further generalized to every semidirect product $\mathbb Z_q\stackrel{\varphi}{\ltimes}\mathbb Z_{p}$, where $q,p$ are primes such that $q\mid p-1$$^{\dagger\dagger\dagger}$. Since $(\operatorname{Aut}(\mathbb Z_p)\cong)\mathbb Z_p^\times$ is cyclic of order $p-1$, it has exactly one subgroup of order $q$, namely exactly $q-1$ elements of order $q$, say $x^i$ ($i=1,\dots,q-1$). Therefore, $(2)$ generalizes to:
\begin{alignat}{1}
&\varphi_i(0)=0,\space\space\space{\varphi_i}_{|X} = \prod_{r=1}^k\alpha^{(i)}_r \\
\tag3
\end{alignat}
for $i=1,\dots,q-1$, where:
$$k:=\frac{p-1}{q}$$
and
$$\alpha^{(i)}_r:=(j_r,j_rx^{\sigma^i(q-1)},j_rx^{\sigma^i(1)},j_rx^{\sigma^i(2)},\dots,j_rx^{\sigma^i(q-2)})$$
being $\sigma:=(1,2,\dots,q-1)$ and, iteratively:
- $j_1:=1$
- $j_{m+1}:=\min\{X\setminus\bigcup_{l=1}^m\{\alpha^{(i)}_l\}\}$, for $m=1,\dots,k-1$ (here $\{\alpha^{(i)}_l\}$ is the set made of the entries of the cycle $\alpha^{(i)}_l$).
$^\dagger$Under a homomorphism, the order of the image of an element divides the order of the element.
$^{\dagger\dagger}$Hence it accounts for the whole sequence of your "interesting group orders", but $55$.
$^{\dagger\dagger\dagger}$Which, incidentally, accounts for the leftover case $55$ of your orders' sequence.