Let ${ g(z) }$ be a real valued thrice differentiable function with inputs ${ z \in \mathbb{R} ^N . }$ Let
$${ f(t) := g(z + t \Delta z) . }$$
We have the heuristics
$${ {\begin{aligned} \Delta f \approx &\, \sum _{i = 1} ^N \frac{\partial g}{\partial z _i} (z + t \Delta z) \, (\Delta (t \Delta z )) _i \\ = &\, \Delta t \sum _{i = 1} ^N \frac{\partial g}{\partial z _i} (z + t \Delta z) \, \Delta z _i \end{aligned}} }$$
that is
$${ \frac{df(t)}{dt} = \sum _{i = 1} ^N \frac{\partial g}{\partial z _i} (z + t \Delta z) \, \Delta z _i . }$$
Differentiating once again, we have
$${ {\begin{align} \frac{d ^2 f(t)}{dt ^2} = &\, \sum _{i = 1} ^N \frac{d}{dt} \left( \frac{\partial g}{\partial z _i} (z + t \Delta z) \right) \, \Delta z _i \\ = &\, \sum _{i = 1} ^N \left( \sum _{ j = 1} ^N \frac{\partial}{\partial z _j} \frac{\partial g}{\partial z _i} ( z + t \Delta z) \, \Delta z _j \right) \, \Delta z _i \\ = &\, \sum _{i, j = 1} ^N \frac{\partial ^2 g}{\partial z _j \partial z _i}(z + t \Delta z) \, \Delta z _j \Delta z _i . \end{align}} }$$
Differentiating once again, we have
$${ {\begin{align} \frac{d ^3 f(t)}{d t ^3 } = &\, \sum _{i, j = 1} ^N \frac{d}{dt} \left( \frac{\partial ^2 g}{\partial z _j \partial z _i}(z + t \Delta z) \right) \, \Delta z _j \Delta z _i \\ = &\, \sum _{i, j = 1} ^N \left( \sum _{k = 1} ^N \frac{\partial}{\partial z _k} \frac{\partial ^2 g}{\partial z _j \partial z _i } (z + t \Delta z) \, \Delta z _k \right) \, \Delta z _j \Delta z _i \\ = &\, \sum _{ i, j, k = 1} ^N \frac{\partial ^3 g}{\partial z _k \partial z _j \partial z _i} (z + t \Delta z) \, \Delta z _k \Delta z _j \Delta z _i \end{align}} }$$
and so on.
Substituting this in the Taylor expansion of ${ f }$ near ${ 0 }$ namely
$${ f(t) \approx f(0) + f ^{'} (0) \, t + \frac{f ^{(2)} (0) }{2!} t ^2 + \frac{f ^{(3)} (0)}{3!} t ^3 + \ldots }$$
we have
$${ {\begin{align} &\, g(z + t \Delta z) \\ \approx &\, g(z) + t \sum _{i = 1} ^N \frac{\partial g}{\partial z _i} (z) \, \Delta z _i + \frac{t ^2}{2!} \sum _{i, j = 1} ^N \frac{\partial ^2 g}{\partial z _j \partial z _i}(z) \, \Delta z _j \Delta z _i + \frac{t ^3}{3!} \sum _{ i, j, k = 1} ^N \frac{\partial ^3 g}{\partial z _k \partial z _j \partial z _i} (z) \, \Delta z _k \Delta z _j \Delta z _i + \ldots \end{align}} }$$
that is
$${ \boxed{{\begin{align} &\, g(z + \Delta z) \\ \approx &\, g(z) + \sum _{i = 1} ^N \frac{\partial g}{\partial z _i} (z) \, \Delta z _i + \frac{1}{2!} \sum _{i, j = 1} ^N \frac{\partial ^2 g}{\partial z _j \partial z _i}(z) \, \Delta z _j \Delta z _i + \frac{1}{3!} \sum _{ i, j, k = 1} ^N \frac{\partial ^3 g}{\partial z _k \partial z _j \partial z _i} (z) \, \Delta z _k \Delta z _j \Delta z _i + \ldots \end{align}}} }$$
Defining the gradient and the Hessian as
$${ \nabla _z g(z) := \left( \frac{\partial g(z)}{\partial z _1}, \, \cdots \, , \frac{\partial g(z)}{\partial z _N} \right) }$$
and
$${ Hg(z) := \left( \frac{\partial ^2 g (z)}{\partial z _i \partial z _j}\right) _{i , j = 1} ^{N} }$$
the second order Taylor expansion can be written as
$${ g(z + \Delta z) \approx g(z) + \nabla _z g (z) \, \Delta z + \frac{1}{2!} (\Delta z) ^T Hg(z) \, (\Delta z) . }$$