Let M be a von Neumann algebra and $\varphi$ a positve normal form on M.
$N = \lbrace x\in M | \varphi(x^*x)=0\rbrace $ . We denote $M_{\varphi} := M/N$ as the pre-Hilbert space defined by the inner product: $\langle a_{\varphi},b_{\varphi}\rangle = \varphi(b^*a)$, when $a_{\varphi}$ the equivalence class of $a\in M$.
We also denote $s :=s(\varphi)$ , the support of $\varphi$.
Q : I would like to know if $(sa)_{\varphi} = a_{\varphi}$ as equivalence classes.
I do know how to prove that $(as)_{\varphi} = a_{\varphi}$ since
$\varphi((as)^*as) = \varphi(s^*a^*as) = \varphi(sa^*as) = \varphi(a^*a) $ from the definition of the support. but if I am trying to do the same with $(sa)_\varphi$, I have: $\varphi((sa)^*sa) = \varphi(a^*sa)$ which I dont know what to do with.
If I am wrong and $(sa)_{\varphi} \neq a_{\varphi}$ then I have another question about the representation defined by $\varphi$ which we denote as $ \pi :=\pi_{\varphi} \colon M \to \pi_\varphi(M)$.
Q: is $\pi|_{M_s} \colon M_s \to \pi(M)$ surjective?(when $M_s = sMs$).
If $(sa)_\varphi = a_\varphi $ then the proof is immediate since $\langle \pi(sxs)a_\varphi,a_\varphi\rangle = \langle\pi(s)\pi(x)\pi(s)a_\varphi,a_\varphi \rangle = \langle \pi(x)\pi(s)a_\varphi,\pi(s)a_\varphi \rangle = \langle \pi(x)(sa)_\varphi,(sa)_\varphi \rangle = \langle \pi(x)a_\varphi,a_\varphi \rangle$
and we can conclude that $\pi(sxs) = \pi(x)$ and we have that $\pi|_{M_s}$ is surjective.
For the definition of the support of normal form:
Stratila, Serban; Zsidó, Lászlo, Lectures on von Neumann algebras. (Lectii de algebre von Neumann.), Bucuresti: Editura Academiei Republicii Socialiste Romania. 409 p. Lei 34.00 (1975). ZBL0324.46068.:
