Consider $$f(x)=\frac{(x+a)^2}{(a-b)(a-c)}+\frac{(x+b)^2}{(b-a)(b-c)}+\frac{(x+c)^2}{(c-a)(c-b)}$$ (where $a,b,c$ are distinct real numbers). If $p$ denotes the number of natural numbers in the range of $f(x)$, then find $p$.
I have no idea of how to proceed this question. Hence not able to provide the requisite steps.
What can be seen is: $$f(0)=\frac{a^2}{(a-b)(a-c)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\,.$$ That is, $$f(0)=-\frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{(a-b)(b-c)(c-a)}\,.$$ This implies $$f(0)=-\frac{a^2(b-c)+bc(b-c)-(b^2-c^2)a}{(a-b)(b-c)(c-a)}\,.$$ Thus $$f(0)=-\frac{(b-c)\big(a^2+bc-(b+c)a\big)}{(a-b)(b-c)(c-a)}\,.$$ Consequently, $$f(0)=-\frac{(b-c)(a-c)(a-b)}{(a-b)(b-c)(c-a)}=-(-1)=1\,.$$ So, at least we know $p\geq 1$.