Example: $e_1=(0,-\frac1{2},\frac{\sqrt{3}}{2}), \: e_2=(\frac{\sqrt{3}}{4},\frac1{4},\frac{\sqrt{3}}{2}), \: e_3=(-\frac{\sqrt{3}}{4}, \frac1{4}, \frac{\sqrt{3}}{2})$
Maxima:
load("vect");
cross(u, v) := matrix(u[2] * v[3] - v[2] * u[3], v[1] * u[3] - u[1] * v[3],u[1] * v[2] - v[1] * u[2]);
dot(u, v) := u[1] * v[1] + u[2] * v[2] + u[3] * v[3];
u : matrix ([u1] , [u2], [u3]);
v : matrix ([v1] , [v2], [v3]);
q1 : matrix ([q11] , [q12], [q13]);
e1 : matrix ([0] , [-1/2], [sqrt(3)/2]);
P1 : matrix([1,0,0],[0,1,0],[0,0,1]) - e1 . transpose(e1);
E1 : cross(e1,u)/(transpose(e1) . u ) + P1 . v - q1 ;
q2 : matrix ([q21] , [q22], [q23]);
e2 : matrix ([sqrt(3)/4] , [1/4], [sqrt(3)/2]);
P2 : matrix([1,0,0],[0,1,0],[0,0,1]) - e2 . transpose(e2);
E2 : cross(e2,u)/(transpose(e2) . u) + P2 . v - q2 ;
q3 : matrix ([q31] , [q32], [q33]);
e3 : matrix ([-sqrt(3)/4] , [1/4], [sqrt(3)/2]);
P3 : matrix([1,0,0],[0,1,0],[0,0,1]) - e3 . transpose(e3);
E3 : cross(e3,u)/(transpose(e3) . u ) + P3 . v - q3 ;
A1 : augcoefmatrix(E1[1],[v1,v2,v3]);
A2 : augcoefmatrix(E1[2],[v1,v2,v3]);
A3 : augcoefmatrix(E1[3],[v1,v2,v3]);
A4 : augcoefmatrix(E2[1],[v1,v2,v3]);
A5 : augcoefmatrix(E2[2],[v1,v2,v3]);
A6 : augcoefmatrix(E2[3],[v1,v2,v3]);
A7 : augcoefmatrix(E3[1],[v1,v2,v3]);
A8 : augcoefmatrix(E3[2],[v1,v2,v3]);
A9 : augcoefmatrix(E3[3],[v1,v2,v3]);
A : matrix(A1[1],A2[1],A3[1],A4[1],A5[1],A6[1],A7[1],A8[1],A9[1]);
AA : A;
for k:1 thru 9 do AA[k][4] : ratsimp(AA[k][4]);
BB : copy(AA);
S1 : copy(BB[1][4]);
S2 : copy(BB[2][4]);
S3 : copy(BB[3][4]);
S4 : copy(BB[4][4]);
S5 : copy(BB[5][4]);
S6 : copy(BB[6][4]);
S7 : copy(BB[7][4]);
S8 : copy(BB[8][4]);
S9 : copy(BB[9][4]);
BB[1][4] : R1;
BB[2][4] : R2;
BB[3][4] : R3;
BB[4][4] : R4;
BB[5][4] : R5;
BB[6][4] : R6;
BB[7][4] : R7;
BB[8][4] : R8;
BB[9][4] : R9;
for k:2 thru 9 do AA : rowop(AA,k,1,AA[k][1]);
for k:2 thru 9 do AA[k] : AA[k]/AA[k][2];
for k:3 thru 9 do AA : rowop(AA,k,2,1);
for k:4 thru 9 do AA[k] : AA[k]/AA[k][3];
for k:5 thru 9 do AA : rowop(AA,k,4,1);
AA : rowop(AA,2,4,AA[2][3]);
for k:1 thru 9 do AA[k][4] : ratsimp(AA[k][4]);
AA : rowswap(AA,3,4);
for k:2 thru 9 do BB : rowop(BB,k,1,BB[k][1]);
for k:2 thru 9 do BB[k] : BB[k]/BB[k][2];
for k:3 thru 9 do BB : rowop(BB,k,2,1);
for k:4 thru 9 do BB[k] : BB[k]/BB[k][3];
for k:5 thru 9 do BB : rowop(BB,k,4,1);
BB : rowop(BB,2,4,BB[2][3]);
for k:1 thru 9 do BB[k][4] : ratsimp(BB[k][4]);
BB : rowswap(BB,3,4);
$$\displaystyle q_i = \frac{e_i \times u}{e_i^T u} + P_i v \tag{1} $$
Matrix form of $(1)$
$$AA = \pmatrix{1&0&0&-{{\left(\sqrt{3}\,{\it q_{11}}+1\right)\,{\it u_3}+
\left(\sqrt{3}-{\it q_{11}}\right)\,{\it u_2}}\over{\sqrt{3}\,
{\it u_3}-{\it u_2}}}\cr 0&{{3}\over{4}}&{{\sqrt{3}}\over{4}}&-{{
\sqrt{3}\,{\it q_{12}}\,{\it u_3}-{\it q_{12}}\,{\it u_2}-\sqrt{3}\,
{\it u_1}}\over{\sqrt{3}\,{\it u_3}-{\it u_2}}}\cr 0&{{\sqrt{3}
}\over{4}}&{{1}\over{4}}&-{{\sqrt{3}\,{\it q_{13}}\,{\it u_3}-
{\it q_{13}}\,{\it u_2}-{\it u_1}}\over{\sqrt{3}\,{\it u_3}-
{\it u_2}}}\cr {{13}\over{16}}&-{{\sqrt{3}}\over{16}}&-{{3}\over{8}}
&-{{\left(2\,\sqrt{3}\,{\it q_{21}}-1\right)\,{\it u_3}+\left(
{\it q_{21}}+2\,\sqrt{3}\right)\,{\it u_2}+\sqrt{3}\,{\it q_{21}}\,
{\it u_1}}\over{2\,\sqrt{3}\,{\it u_3}+{\it u_2}+\sqrt{3}\,{\it u_1}
}}\cr -{{\sqrt{3}}\over{16}}&{{15}\over{16}}&-{{\sqrt{3}}\over{8}}&-
{{\left(2\,\sqrt{3}\,{\it q_{22}}+\sqrt{3}\right)\,{\it u_3}+
{\it q_{22}}\,{\it u_2}+\left(\sqrt{3}\,{\it q_{22}}-2\,\sqrt{3}
\right)\,{\it u_1}}\over{2\,\sqrt{3}\,{\it u_3}+{\it u_2}+\sqrt{3}\,
{\it u_1}}}\cr -{{3}\over{8}}&-{{\sqrt{3}}\over{8}}&{{1}\over{4}}&-
{{2\,\sqrt{3}\,{\it q_{23}}\,{\it u_3}+\left({\it q_{23}}-\sqrt{3}
\right)\,{\it u_2}+\left(\sqrt{3}\,{\it q_{23}}+1\right)\,{\it u_1}
}\over{2\,\sqrt{3}\,{\it u_3}+{\it u_2}+\sqrt{3}\,{\it u_1}}}\cr {{
13}\over{16}}&{{\sqrt{3}}\over{16}}&{{3}\over{8}}&-{{\left(2\,\sqrt{
3}\,{\it q_{31}}-1\right)\,{\it u_3}+\left({\it q_{31}}+2\,\sqrt{3}
\right)\,{\it u_2}-\sqrt{3}\,{\it q_{31}}\,{\it u_1}}\over{2\,\sqrt{
3}\,{\it u_3}+{\it u_2}-\sqrt{3}\,{\it u_1}}}\cr {{\sqrt{3}}\over{16
}}&{{15}\over{16}}&-{{\sqrt{3}}\over{8}}&-{{\left(2\,\sqrt{3}\,
{\it q_{32}}-\sqrt{3}\right)\,{\it u_3}+{\it q_{32}}\,{\it u_2}+
\left(-\sqrt{3}\,{\it q_{32}}-2\,\sqrt{3}\right)\,{\it u_1}}\over{2
\,\sqrt{3}\,{\it u_3}+{\it u_2}-\sqrt{3}\,{\it u_1}}}\cr {{3}\over{8
}}&-{{\sqrt{3}}\over{8}}&{{1}\over{4}}&-{{2\,\sqrt{3}\,{\it q_{33}}
\,{\it u_3}+\left({\it q_{33}}+\sqrt{3}\right)\,{\it u_2}+\left(1-
\sqrt{3}\,{\it q_{33}}\right)\,{\it u_1}}\over{2\,\sqrt{3}\,
{\it u_3}+{\it u_2}-\sqrt{3}\,{\it u_1}}}\cr } \tag{2}$$
More readable:
$$BB = \pmatrix{1&0&0&{\it R_1}\cr 0&{{3}\over{4}}&{{\sqrt{3}}\over{4}}&
{\it R_2}\cr 0&{{\sqrt{3}}\over{4}}&{{1}\over{4}}&{\it R_3}\cr {{13
}\over{16}}&-{{\sqrt{3}}\over{16}}&-{{3}\over{8}}&{\it R_4}\cr -{{
\sqrt{3}}\over{16}}&{{15}\over{16}}&-{{\sqrt{3}}\over{8}}&{\it R_5}
\cr -{{3}\over{8}}&-{{\sqrt{3}}\over{8}}&{{1}\over{4}}&{\it R_6}\cr
{{13}\over{16}}&{{\sqrt{3}}\over{16}}&{{3}\over{8}}&{\it R_7}\cr {{
\sqrt{3}}\over{16}}&{{15}\over{16}}&-{{\sqrt{3}}\over{8}}&{\it R_8}
\cr {{3}\over{8}}&-{{\sqrt{3}}\over{8}}&{{1}\over{4}}&{\it R_9}\cr } \tag{3}$$
Reduced row echelon form:
$$BB = \pmatrix{1&0&0&{\it R_1}\cr 0&1&0&{{16\,{\it R_4}+8\,\sqrt{3}\,
{\it R_2}-13\,{\it R_1}}\over{5\,\sqrt{3}}}\cr 0&0&1&-{{16\,\sqrt{3}
\,{\it R_4}+4\,{\it R_2}-13\,\sqrt{3}\,{\it R_1}}\over{5\,\sqrt{3}}}
\cr 0&0&0&{{12\,{\it R_3}-4\,\sqrt{3}\,{\it R_2}}\over{3^{{{3}\over{
2}}}}}\cr 0&0&0&-{{80\,{\it R_5}-112\,\sqrt{3}\,{\it R_4}-128\,
{\it R_2}+32\,3^{{{3}\over{2}}}\,{\it R_1}}\over{35\,\sqrt{3}}}\cr 0
&0&0&{{40\,\sqrt{3}\,{\it R_6}+16\,3^{{{3}\over{2}}}\,{\it R_4}+32\,
{\it R_2}-8\,3^{{{3}\over{2}}}\,{\it R_1}}\over{5\,3^{{{3}\over{2}}}
}}\cr 0&0&0&{{16\,{\it R_7}+16\,{\it R_4}-26\,{\it R_1}}\over{5}}
\cr 0&0&0&-{{80\,{\it R_8}-112\,\sqrt{3}\,{\it R_4}-128\,{\it R_2}+
86\,\sqrt{3}\,{\it R_1}}\over{35\,\sqrt{3}}}\cr 0&0&0&{{40\,\sqrt{3}
\,{\it R_9}+16\,3^{{{3}\over{2}}}\,{\it R_4}+32\,{\it R_2}-2\,3^{{{7
}\over{2}}}\,{\it R_1}}\over{5\,3^{{{3}\over{2}}}}}\cr } \tag{4}$$
The first three rows solve for $v_1,v_2,v_3$.
These can be substituted into $u \cdot v = 0$
Rows four to nine are equations entirely in $u$.
Since there are only three denominator expressions in $R$ then multiplying the equations by them will result in cubic equations in $u$.