Let $ \mathbf{b} \in \mathbb{R}_+^n$, $\mathbf{E} \in \mathbb{R}_+^{n \times m}$, $\mathbf{V} \in \mathbb{R}_+^{n \times m}$ with $\mathbf{E}^T \mathbf{1}_n = \mathbf{1}_m$ and $\mathbf{V} \mathbf{1}_m = \mathbf{1}_n$, and $\forall i, j \ \ E_{ij} \geq 0, \ \ V_{ij} \geq 0$ where $\mathbf{1}_n$ is the vector of ones of size $n$.
I have the following system of equations where I am trying to find a closed form solution for non-negative $\mathbf{p}$ (i.e., $\mathbf{p} \in \mathbb{R}_+^m$): \begin{align} \mathbf{1}_m = \mathbf{V}^T D^{-1}(\mathbf{V} \mathbf{p}) \mathbf{E} \mathbf{p} \end{align} where $D(\mathbf{x})$ is the diagonal matrix whose $(i, i)^{th}$ entry corresponds to $x_i$ and $D^{-1}(\mathbf{x})$ is the inverse of $D(\mathbf{x})$.
Is it possible to solve for non-negative $\mathbf{p}$ (i.e., $\mathbf{p} \in \mathbb{R}_+^m$) in polynomial time? What would be such an algorithm? Otherwise, can I find an approximation in polynomial time?