Let $\alpha$ and $\beta$ be roots of the quadratic equation
$\therefore$ $\alpha$ and $\beta$ $\in \Bbb{Q}$ (where $\Bbb{Q}$ represents set of rational numbers)
$\therefore$ $b^2-4ac$ is a perfect square (as if it is not a perfect square, roots will not be rational)
Let $b^2-4ac = \lambda^2$
$\therefore$ $\sqrt{b^2-4ac}=\lambda$ where $\lambda \in \mathbb{W}$ (as output of square root function is always non-negative and also $-4ac$ should be a negative integer as $a$ and $c$ are odd primes, therefore $b^2$ should be a natural number as $b$ is an integer, ($b$ cannot be zero otherwise $b^2-4ac$ will be negative) and therefore, $b^2-4ac$ should be a whole number)
$\therefore b^2-\lambda^2 = 4ac$
$\therefore (b+\lambda)(b-\lambda) = 4ac$
$(b+\lambda)$ and $(b-\lambda)$ both can be odd or both can be even
$\because$ Product of $(b+\lambda)$ and $(b-\lambda)$ is even
$\therefore (b+\lambda)$ and $(b-\lambda)$ are even
$\therefore$ Case 1 $\implies$ $b+\lambda=2a$ , $b-\lambda=2c$ $\implies$ $b=a+c$ , $\lambda=a-c$
Case 2 $\implies$ $b+\lambda=2c$ , $b-\lambda=2a$ $\implies$ $b=a+c$ , $\lambda=-a+c$
Case 3 $\implies$ $b+\lambda=-2a$ , $b-\lambda=-2c$ $\implies$ $b=-a-c$ , $\lambda=-a+c$
Case 4 $\implies$ $b+\lambda=-2c$ , $b-\lambda=-2a$ $\implies$ $b=-a-c$ , $\lambda=a-c$
Case 5 $\implies$ $b+\lambda=2$ , $b-\lambda=2ac$ $\implies$ $b=1+ac$ , $\lambda=1-ac$
Case 6 $\implies$ $b+\lambda=-2ac$ , $b-\lambda=-2$ $\implies$ $b=-1-ac$ , $\lambda=1-ac$
Case 7 $\implies$ $b+\lambda=-2$ , $b-\lambda=-2ac$ $\implies$ $b=-1-ac$ , $\lambda=ac-1$
Case 8 $\implies$ $b+\lambda=2ac$ , $b-\lambda=2$ $\implies$ $b=1+ac$ , $\lambda=ac-1$
Cases 5 and 6 are eliminated as lambda is not a natural number for these cases $\because$ $b+\lambda < b-\lambda$ and/or $\lambda = 1 - ac ≤ -8$ because $ac$ has minimum value of 9 as minimum value of $a$ and $c$ is 3
By Quadratic Formula,
$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $
$\therefore x = {-b \pm \lambda \over 2a} $
$\therefore x = {-b + \lambda \over 2a}$ or ${-b - \lambda \over 2a} $
$\therefore x = {-(b - \lambda) \over 2a}$ or ${-(b + \lambda) \over 2a} $
$\therefore$ In case 1 and case 2 ; $x$ = $-c \over a$ or -1
$\therefore$ In case 3 and case 4 ;$x$ = $c \over a$ or 1
$\therefore$ In case 7 ; $x$ = $c$ or $1 \over a$
$\therefore$ In case 8 ; $x$ = $-c$ or $-1 \over a$
Therefore, if we see cases 1-4, case 7 and case 8, we can conclude that one root will be independent of a and b.