How to find following integral $$\int \csc^3 x\ dx=?$$
my work:
i substitute $\csc x =t$, $dx=-\frac{dt}{\csc x\cot x}=-\frac{dt}{t\sqrt{t^2-1}}$ $$\int t^3\frac{-dt}{t\sqrt{t^2-1}}$$
$$=-\int \frac{t^2dt}{\sqrt{t^2-1}}$$ substitute $t=\sec\theta$, $dt=\sec\theta\tan\theta\ d\theta$ $$=-\int \frac{\sec^2\theta\sec\theta\tan\theta\ d\theta}{\tan\theta}$$ $$=-\int \sec^3\theta d\theta$$
i got the similar cubic trigonometric function. I am not able to solve this integration. please help me solve it. thanks.