Yes, the simplified integral that you got is correct.
Now, we are left with the integral
$$I=-\int\frac{dv}{(1-v^2)^2}=\int\frac{-2vdv}{2v(1-v^2)^2}$$
Using integration by parts (IBP),
$$I=\frac{-1}{2v(1-v^2)}-\frac{1}{2}\int\frac{dv}{v^2(1-v^2)}$$
Let the latter integral be $J$. Then
$$J=\int\frac{dv}{v^2(1-v^2)}=\int\frac{dv}{v^2}+\int\frac{dv}{1-v^2}$$
$$J=\frac{-1}{v}+\frac{1}{2}\ln\bigg(\frac{1+v}{1-v}\bigg)$$
Therefore, the original integral $\int\frac{1}{\sin^3x}dx$
$$=\frac{-1}{2\cos x(1-\sin^2x)}-\frac{1}{2}\bigg(\frac{-1}{\cos x}+\frac{1}{2}\ln\bigg(\frac{1+\cos x}{1-\cos x}\bigg)\bigg) + C$$
On simplifying by using trigonometric identities,
$$\int\frac{dx}{\sin^3x}=\frac{-1}{2}\bigg(\cot x\csc x+\ln{(|\csc x+\cot x|)}\bigg)+C$$