First we multiply the expression with a test function $\varphi.$ Then we integrate doing a variable substitution:
$$
\int_{-\infty}^{\infty} \frac{\sin^2(xy)}{yx^2} \varphi(x) \, dx
= \int_{-\infty}^{\infty} \left( \frac{\sin(xy)}{xy} \right)^2 \varphi(x) \, y \, dx
= \{ z = xy \}
= \int_{-\infty}^{\infty} \left( \frac{\sin(z)}{z} \right)^2 \varphi(\frac{z}{y}) \, dz \\
\to \int_{-\infty}^{\infty} \left( \frac{\sin(z)}{z} \right)^2 \varphi(0) \, dz
= \int_{-\infty}^{\infty} \left( \frac{\sin(z)}{z} \right)^2 \, dz \, \varphi(0)
.
$$
Here we can use the Plancherel theorem for the left integral:
$$
\int_{-\infty}^{\infty} \left( \frac{\sin(z)}{z} \right)^2 \, dz
= \left< \frac{\sin(z)}{z}, \frac{\sin(z)}{z} \right>
= \frac{1}{2\pi} \left< \mathcal{F}\{\frac{\sin(z)}{z}\}, \mathcal{F}\{\frac{\sin(z)}{z}\} \right> \\
= \frac{1}{2\pi} \left< \pi\chi_{[-1,1]}, \pi\chi_{[-1,1]} \right>
= \frac{\pi^2}{2\pi} \int_{-1}^{1} dx
= \pi
.
$$
Why is $\mathcal{F}\{\frac{\sin(z)}{z}\} = \pi\chi_{[-1,1]}$?
We have
$$
\mathcal{F}\{\chi_{[-1,1]}(z)\}(\zeta)
= \int \chi_{[-1,1]}(z) \, e^{-i\zeta z} dz
= \left[ \frac{e^{-i\zeta z}}{-i\zeta} \right]_{-1}^{1}
= \frac{e^{-i\zeta}}{-i\zeta} - \frac{e^{i\zeta}}{-i\zeta}
= 2\frac{\sin(\zeta)}{\zeta}
,
$$
so by the Fourier inversion theorem,
$$
\mathcal{F}\{2\frac{\sin(z)}{z}\}(\zeta)
= 2\pi \chi_{[-1,1]}(\zeta),
$$
i.e.
$$
\mathcal{F}\{\frac{\sin(z)}{z}\}(\zeta)
= \pi \chi_{[-1,1]}(\zeta),
$$