4

I have $u(x,t)$ - solution of Cauchy problem $$u_t=u_{xx},~~~u(x,0)=e^{-x^2},$$ where $t>0, x\in\mathbb{R}.$

Is there a way to find such a limit? I have seen several theorems which help to find value of $\lim\limits_{t \to \infty} u(x,t),$ but this integral realy spoils everything.

Thank you.

Haldot
  • 887
  • 1
  • 7
  • 17

3 Answers3

3

The $L_p$ solution to the problem can be obtained by convolution with Gauss-Wierstrass kernel:

$$ u(x,t)= W_t*f(x)=\frac{1}{\sqrt{4\pi t}}\int f(y)e^{\frac{-|x-y|^2}{4t}}\,dy $$

where $f(x)=e^{-x^2}$. The kernel $W_t$ is a good approximation to the identity and so, $W_t*f\rightarrow f$ in $L_p$ ($1\leq p<\infty$ ) and point wise to $f$ (it should be at any Lebesgue point of $f$ fut $f(x)=e^{-x^2}$ is continuous so every point in $\mathbb{R}$ is a Lebesgue point of $f$. In fact, the problem is simple here since $f(x)$ is uniformly continuous.

Here are some generalities of approximation to identity. You have to show that $W_t(x)=t^{-1}W_1(x/t)$, where $W_1(y)=\frac{1}{\sqrt{4\pi}}e^{-y^2}$ satisfies the conditions (1)--(3) described below:


Consider a collection $\{K_\varepsilon:\varepsilon>0\}\subset\mathcal{L}_1(\mathbb{R}^n,\lambda_n)$ that satisfy the following properties:

  1. $\int_{\mathbb{R}^n} K_\varepsilon(x)\,dx=a$ for all $\varepsilon>0$.
  2. $\sup_{\varepsilon>0}\|K_\varepsilon\|_1<\infty$.
  3. For any $\delta>0$, $\int_{|x|>\delta}|K_\varepsilon(x)|\,dx\xrightarrow{\varepsilon\rightarrow0}0$.

Theorem. Suppose $\{K_\varepsilon:\varepsilon>0\}\subset\mathcal{L}_1(\mathbb{R}^n,\lambda_n)$ satisfy (1)--(3) above. Then, for any $f\in\mathcal{L}_p(\mathbb{R}^n,\lambda_n)$, $1\leq p<\infty$, \begin{aligned} \lim_{\varepsilon\rightarrow0}\|f* K_{\varepsilon} - a\,f\|_p = 0. \end{aligned}

If $f\in\mathcal{L}_\infty(\mathbb{R}^n,\lambda_n)$ is continuous at a point $x$, then $\lim_{\varepsilon\rightarrow0}f*K_\varepsilon(x)=f(x)$. If $f$ is bounded and uniformly continuous, then $f*K_\varepsilon$ converges to $f$ uniformly as $\varepsilon\rightarrow0$.

Proof:

Let $M=\sup_{\varepsilon>0}\|K_\varepsilon\|_1$. If $f\in\mathcal{L}_p(\mathbb{R}^n,\lambda_n)$, $1\leq p<\infty$, and application of the generalized Minkowski's inequality gives \begin{aligned} \|f* K_\varepsilon -af\|_p &\leq \Big(\int\Big(\int_{\mathbb{R}^n}|f(x-y)-f(x)| |K_\varepsilon(y)|\,dy\Big)^p\,dx\Big)^{1/p}\\ & \leq \int_{\mathbb{R}^d}\Big(\int|f(x-y)-f(x)|^p\,dx\Big)^{1/p}|K_\varepsilon(y)|\,dy\\ &=\int\|\tau_yf-f\|_p|K_\varepsilon(y)|\,dy. \end{aligned} where $\tau_y$ is the translation operator. Recall that $\lim_{y\rightarrow0}\|\tau_yf-f\|_p=0$ for all $f\in\mathcal{L}_p$. Assumption (2) implies that for any $\eta>0$, there exists $\delta>0$ such that $M\|\tau_yf-f\|_p<\eta/2$ whenever $|y|\leq\delta$. By assumption (3), for some $\varepsilon'>0$ we have
$2\|f\|_p\int_{|y|>\delta}|K_\varepsilon(x)|\,dx<\eta/2$ whenever $\varepsilon<\varepsilon'$. Combining these facts, we obtain \begin{aligned} \|f*K_\varepsilon-af\|_p\leq& \int_{|y|\leq\delta}\|\tau_yf-f\|_p|K_\varepsilon(y)|\,dy\\ &\quad + \int_{|y|>\delta}\|\tau_yf-f\|_p|K_\varepsilon(y)|\,dy \leq \frac{\eta}{2} + \frac{\eta}{2} \end{aligned} whenever $0<\varepsilon<\varepsilon'$.

The second statement follows similarly. Let $\eta>0$ be fixed. If $f$ is continuous at $x$, then for some $\delta>0$, $|x-u|\leq\delta$ implies that $|f(x)-f(u)|<\frac{\eta}{2 M}.$ For such $\delta>0$, there is $\varepsilon'>0$ such that $2\|f\|_{\infty}\int_{|x|>\delta}|K_\varepsilon(x)|\,dx<\frac{\eta}{2}$ whenever $0<\varepsilon<\varepsilon'$. Putting these statements together gives \begin{aligned} |f*K_\varepsilon(x)&-af(x)|\leq \int |f(x-y)-f(x)||K_\varepsilon|(y)\,dy\\ &\leq \int_{|y|\leq\delta}+\int_{|y|>\delta}|f(x-y)-f(x)||K_\varepsilon|(y)\,dy \leq \frac{\eta}{2}+\frac{\eta}{2} \end{aligned} If $f$ is bounded and uniformly continuous, then $\delta>0$ can be chosen so that $$\sup_{|v-u|<\delta}|f(u)-f(u)|<\frac{\eta}{2M}.$$ Uniform convergence follows immediately.

Mittens
  • 46,352
  • It gives us how $u(x,t)$ looks, but how does it help to evaluate the limit? I mean, this integral is pretty scary – Haldot May 18 '20 at 19:52
  • Look for what is call "approximation to the identity". you can derive the limit by using the generalized Minkowski inequality. – Mittens May 18 '20 at 20:55
1

Solution 1. Since $(x, t) \mapsto u(-x, t)$ solves the same Cauchy problem, it follows that $u(x, t) = u(-x, t)$. So,

$$ \int_{0}^{\infty} u(x, t) \, \mathrm{d}x = \frac{1}{2} \int_{-\infty}^{\infty} u(x, t) \, \mathrm{d}x. $$

Now, the heat equation preserves the total mass, hence the integral is equal to

$$ \frac{1}{2} \int_{-\infty}^{\infty} u(x, 0) \, \mathrm{d}x = \frac{\sqrt{\pi}}{2}. $$

Since the integral does not depend on $t$, the answer is still $\sqrt{\pi}/2$.

Solution 2. Alternatively, note that the heat kernel

$$ \Phi_t(x) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/4t} $$

solves the heat equation $\partial_t \Phi_t = \partial_{xx} \Phi_t$ and that $u(x, 0) = \sqrt{\pi} \Phi_{1/4}(x)$. So, it follows that

$$ u(x, t) = \sqrt{\pi} \Phi_{(1/4)+t}(x). $$

From this, it is easy to deduce that $\int_{0}^{\infty} u(x, t) \, \mathrm{d}x = \sqrt{\pi}/2$ and hence the limit is $\sqrt{\pi}/2$ as well.

Sangchul Lee
  • 181,930
0

I believe you have that: $$u(x,t)=e^{-x^2}f(t)$$ and so you want: $$\lim_{t\to\infty}f(t)\int_0^\infty e^{-x^2}dx$$ assuming that this is interchangeable goes to: $$\frac{\sqrt{\pi}}{2}\lim_{t\to\infty}f(t)$$

Henry Lee
  • 12,554