The rules of negation elimination and negation introduction in your proof system requires the derivation of two contradictions within the context of the assumption. Now, the assumption and its own contradiction would suffice, but it is only necessary to derive any two contradictory statements.
$$\begin{array}{|l}~~~~\begin{array}{|l} \neg P\\\hline~~\vdots\\~~ Q\\~~\vdots\\\neg Q\end{array}\\~~P\end{array}\qquad\begin{array}{|l}~~~~\begin{array}{|l} ~~ P\\\hline~~\vdots\\~~ Q\\~~\vdots\\\neg Q\end{array}\\\neg P\end{array}$$
So your proof is quite okay as it stands.
$$\begin{array}{|l}~~~~\begin{array}{|l}~~1.~\neg (A\vee\neg A)\\\hline~~\begin{array}{|l}~~2.~A\\\hline~~3.~ A\vee\neg A\hspace{10ex}{\vee}\mathrm I~2\\~~4.~\neg(A\vee\neg A)\hspace{7ex}\mathrm R~1\end{array}\\~~5.~\neg A\hspace{17ex}{\neg}\mathsf I~2{-}4\\~~\begin{array}{|l}~~6.~\neg A\\\hline~~7.~ A\vee\neg A\hspace{10ex}{\vee}\mathrm I~6\\~~8.~\neg(A\vee\neg A)\hspace{7ex}\mathrm R~1\end{array}\\~~9.~~~ A\hspace{17ex}{\neg}\mathsf E~6{-}8\end{array}\\10.~A\vee\neg A\hspace{15.5ex}{\neg}\mathsf E~1{-}9\end{array}$$
Now, since that is the skeleton you were required to fill, you have done what was asked.
Of course, there are other skeletons and the standard proof prunes things down just a bit.
$$\begin{array}{|l}~~~~\begin{array}{|l}~~1.~\neg (A\vee\neg A)\\\hline~~\begin{array}{|l}~~2.~A\\\hline~~3.~ A\vee\neg A\hspace{10ex}{\vee}\mathrm I~2\\~~4.~\neg(A\vee\neg A)\hspace{7ex}\mathrm R~1\end{array}\\~~5.~\neg A\hspace{17ex}{\neg}\mathsf I~2{-}4\\~~6.~ A\vee\neg A\hspace{12ex}{\vee}\mathrm I~5\end{array}\\~~7.~A\vee\neg A\hspace{15.5ex}{\neg}\mathsf E~1{-}6\end{array}$$