Given a polynomial ring $k[x,y]$ and a ideal $I=(f)$ generated by element $f$. Consider the quotient ring $k[x,y]/I$,I have the following questions:
- If $f$ is in the form of $g(x)+h(y)$, can the elements of quotient ring be written as $\sum^{n_{1}}_{i=0}\sum^{n_{2}}_{j=0}a_{ij}x^{i}y^{j}$, with $a_{ij}\in k$, $n_{1}< deg(g)$ and $n_{2}<deg(h)$?
- If we do not assume the specific form of $f$, can we still write down the explicit form of those elements?(In terms of $x$ and $y$ and degree of $f$)