Exercise 14.7.4 from Dummit and Foote
Let $K=\mathbb{Q}(\sqrt[n]{a})$, where $a\in \mathbb{Q}$, $a>0$ and suppose $[K:\mathbb{Q}]=n$ (i.e., $x^n-a$ is irreducible). Let $E$ be any subfield of $K$ and let $[E:\mathbb{Q}]=d$. Prove that $E=\mathbb{Q}(\sqrt[d]{a})$. [Consider $ N_{K/E}(\sqrt[n]a)\in E$]
Here is a solution in MSE.
Subfield of $\mathbb{Q}(\sqrt[n]{a})$
I rewrite the solution in that answer here.
Let $\alpha=\sqrt [n]a\in \mathbb R_+$ be the real positive $n$-th root of $a$, so that $K=\mathbb Q(\alpha)$.
Consider some intermediate field $\mathbb Q\subset E\subset K$ (with $d:=[E:\mathbb Q]$) and define $\beta=N_{K/E}(\alpha)\in E$.
We know that $\beta=\Pi _\sigma \sigma (\alpha) $ where $\sigma$ runs through the $E$-algebra morphisms $K\to \mathbb C$.
Now, $\sigma (\alpha)=w_\sigma \cdot\alpha$ for some suitable complex roots $w_\sigma$ of $1$ so that $$\beta=\Pi _\sigma \sigma (\alpha)=(\Pi _\sigma w_\sigma) \cdot\alpha^e\quad (\operatorname { where } e=[K:E]=\frac nd)$$ Remembering that $\beta\in E\subset K\subset \mathbb R$ is real and that the only real roots of unity are $\pm 1$ we obtain $\Pi _\sigma w_\sigma=\frac {\beta}{\alpha^e}=\pm 1$ and $\beta=\pm \alpha^e=\pm \sqrt [d]a$.
Thus we have $\mathbb Q(\beta)=\mathbb Q(\sqrt [d]a)\subset E$ with $ \sqrt [d]a$ of degree $d$ over $\mathbb Q$.
Since $[E:\mathbb Q]=d$ too we obtain $E=\mathbb Q(\sqrt [d]a)$, just as claimed in the exercise.
Question: In this line, $$\beta=\Pi _\sigma \sigma (\alpha)=(\Pi _\sigma w_\sigma) \cdot\alpha^e\quad (\operatorname { where } e=[K:E]=\frac nd)$$ $K$ is not necessarily galois extension.$|Aut(K/E)|$ need not be equal to $[K:E]=\frac nd$.
It's there in all the solution I came across. I wonder why it has to be true. Please explain why $e$ in above equation has to be $[K:E]$