Exercise 14.7.4 from Dummit and Foote
Let $K=\mathbb{Q}(\sqrt[n]{a})$, where $a\in \mathbb{Q}$, $a>0$ and suppose $[K:\mathbb{Q}]=n$ (i.e., $x^n-a$ is irreducible over $\mathbb Q$). Let $E$ be any subfield of $K$ and let $[E:\mathbb{Q}]=d$. Prove that $E=\mathbb{Q}(\sqrt[d]{a})$. [Consider $ N_{K/E}(\sqrt[n]a)\in E$]
I think I know how to solve it by considering $K=\mathbb{Q}(\sqrt[n]{a})$ as a subfield of $L=K(\sqrt[n]{a},\xi_n=e^{2\pi i/n})$, splitting field of $x^n-a$. $L$ over $\mathbb{Q}$ has Galois group $\left<\sigma,\tau\right>$ where $\sigma: \sqrt[n]{a}\rightarrow \sqrt[n]{a}\xi_n$, $\xi_n\rightarrow\xi_n$ and $\tau:\xi_n\rightarrow\xi_n^{m}$ ($\gcd(m,n)=1$, $m\neq 1$), $\sqrt[n]{a}\rightarrow \sqrt[n]{a}$. $K$ is the fixed field of $\left<\tau\right>$, therefore a subfield of $K$ must be fixed by a group containing $\left<\tau\right>$, and it's not hard to check that $\left<\tau,\sigma^{d}\right>$ fixes $K=\mathbb{Q}(\sqrt[d]{a})$.
However what I don't understand the given hint. Can anyone explain to me what that notation mean (I couldn't find it in the corresponding section in the book) and how does that (potentially) generate a easier solution of this problem?