I need some help to find a mistake in my proof.
I have to prove that $\sum_{n\leq x}2^{\Omega(n)}\sim cx\log^2x$ for $x\rightarrow+\infty$, where $\Omega(p_1^{k_1}\cdot\ldots\cdot p_j^{k_j})=k_1+\ldots+ k_j$.
I defined $F(s)=\sum_{n\geq 1}\frac{2^{\Omega(n)}}{n^s}$ and calculated its Euler's product as follows (here, I use the fact that $\Omega(p^k)=k$ for all primes $p$) \begin{equation} \prod_p\left(1+\sum_{k\geq1}\frac{2^k}{p^{ks}}\right)=\prod_p\left(1+\frac{2}{p^s}\frac{1}{1-\frac{2}{p^s}}\right)=\prod_p\left(\frac{p^s}{p^s-2}\right). \end{equation}
Let $H(s)$ s.t. $F(s)=H(s)\zeta^{2}(s)$, so that \begin{equation} H(s)=\prod_p\left(\frac{p^s}{p^s-2}\right)\left(1-\frac{1}{p^s}\right)^{2}=\prod_p\left(1+\frac{1}{p^s(p^s-2)}\right) \end{equation} and this product converges for $\Re(s)>\frac{1}{2}$.
Then, I defined $h(n)$ such that $H(s)=\sum_{n\geq 1}\frac{h(n)}{n^s}$ (converging for $\Re(s)>1/2$). In this way, by $F=H\zeta^2$, you get the expression $2^{\Omega(n)}=h\ast d(n)$, where $\zeta^2(s)=\sum_{n\geq1}\frac{d(n)}{n^s}$.
So, \begin{equation} \sum_{n\leq x}2^{\Omega(n)}=\sum_{n\leq x}\sum_{m|n}h(m)d\left(\frac{n}{m}\right)=\sum_{d\leq x}h(d)\sum_{m\leq \frac{x}{d}}d(m). \end{equation} Then, I used $\sum_{n\leq x}d(n)=x\log x+O(x)$, to get \begin{equation} \sum_{n\leq x}2^{\Omega(n)}=x\log x\sum_{d\leq x}\frac{h(d)}{d}-x\sum_{d\leq x}\frac{h(d)\log d}{d}+O(x). \end{equation} Now, $H(1)=\sum_{n\geq 1}\frac{h(n)}{n}$ and $H'(1)=-\sum_{n\geq 1}\frac{h(n)\log n}{n}$, so that I get
\begin{equation} \sum_{n\leq x}2^{\Omega(n)}=H(1)x\log x+... \end{equation}
I can't get $Cx\log^2x$ out in any way. Please, help me!