How to find an estimate for the sum $\sum_{n\leq x} 2^{\omega(n)}$, where $\omega(n)$ is the number of distinct prime factors of $n$.
Since $2^{\omega(n)}$ is multiplicative, computing its value at prime power, we see that $2^{\omega(n)}=\sum_{d\mid n}\mu^2(d)$. Then \begin{align} \sum_{n\leq x}2^{\omega(n)}&=\sum_{n\leq x}\sum_{d\mid n}\mu^2(d)=\sum_{d\leq x}\mu^2(d)\sum_{d\mid n} 1\\ &=\sum_{d\leq x}\mu^2(d)\left\lfloor \frac{x}{d}\right\rfloor=\sum_{d\leq x}\mu^2(d)(\frac{x}{d}+O(1))\\ &=x\sum_{d\leq x}\frac{\mu^2(d)}{d}+O(\sum_{d\leq x}\mu^2(d)) \end{align}
I get stuck here, the series $\sum_{n=1}^\infty\frac{\mu^2(n)}{n}$ is not convergent, I don't know how to estimate the first term.