Definition . For $m ≥ 0$, the $m$th power-sum denominator is the smallest positive integer $d_m$ such that $d_m · (1^m + 2^m + · · · + n^m) $is a polynomial in $n$ with integer coefficients. The first few values of $d_m$ (see , Sequence A064538) are $d_m = 1, 2, 6, 4, 30, 12, 42, 24, 90, 20, 66, 24, 2730, 420, 90, 48, 510, . . . .$
Define $$\begin{split} S_m(n)&= 1^m+2^m+...+n^m \\ &= \frac{1}{d_m}\sum_{l=1}^{m+1} b_l n^{l} \end{split}$$
Can it be shown that
Let $n=d_mt+r$ where $t\ge0,r\ge 0$ then $S_m(n)$ may represent as
$$\begin{split} S_m(n)&= \sum_{l=1}^{m+1}(x_lt+y_l)n^{l-1}\end{split}$$
With $x_l$ and $ y_l$ are integers.
Example
Let $m=2$ gives $S_2(n)=\frac{n(n+1)(2n+1)}{6}\to d_2=6$
let $r=2\to n=6t+2$
And $S_2(n)=(2t+1)n^2+(t)n^1+(3t+1)n^0$
Here $x_1,x_2,x_3,y_1,y_2,y_3$ are $2,1,3,1,0,1$ respectively.