The Eulerian Numbers (of first kind) are explicitely defined as
$$
\eqalign{
& \left\langle \matrix{ n \cr m \cr} \right\rangle
= \sum\limits_{0\, \le \,k\, \le \,m} {\left( { - 1} \right)^{\,k} \left( \matrix{ n + 1 \cr k \cr} \right)\left( {m + 1 - k} \right)^{\,n} } = \cr
& = \sum\limits_{0\, \le \,k\, \le \,m} {\left( \matrix{ k - n - 2 \cr k \cr} \right)\left( {m + 1 - k} \right)^{\,n} } = \cr
& = \sum\limits_k {\left( \matrix{ m - k \cr m - k \cr} \right)\left( \matrix{ k - n - 2 \cr k \cr} \right)\left( {m + 1 - k} \right)^{\,n} } = \cr
& = \sum\limits_{0\, \le \,k\,\left( { \le \,n - m} \right)\,} {\left( { - 1} \right)^{\,n - m + k} \left( \matrix{ n + 1 \cr
m + 1 + k \cr} \right)\,k^{\,n} } = \cr
& = \sum\limits_{0\, \le \,k\,\left( { \le \,n - m} \right)\,} {\left( { - 1} \right)^{\,n - m + k} \left( \matrix{ n + 1 \cr
n - m - k \cr} \right)\,k^{\,n} } = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,k\, \le \,n - m\,} {\left( { - 1} \right)^k \left( \matrix{ n + 1 \cr
k \cr} \right)\,\left( {n - m - k} \right)^{\,n} } \cr}
$$
The Worpitsky's Identity then relates the monomial powers to binomials as
$$
x^{\,n} = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,n} \right)} {\left\langle \matrix{ n\cr
j \cr} \right\rangle } \left( \matrix{ x + j \cr
n \cr} \right)\quad \quad {\rm integer }n \ge 0
$$
Summing this, and using the "double convolution" identity for the binomials
we get
$$
\eqalign{
& \sum\limits_{0\, \le \,k\, \le \,m} k ^{\,n} = \sum\limits_{0\, \le \,k\, \le \,m} {\sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,n} \right)} {\left\langle \matrix{
n \cr
j \cr} \right\rangle } \left( \matrix{
k + j \cr
n \cr} \right)} = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,m} \right)} {\sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,n} \right)} {\left\langle \matrix{
n \cr
j \cr} \right\rangle } \left( \matrix{
m - k \cr
m - k \cr} \right)\left( \matrix{
k + j \cr
k + j - n \cr} \right)} = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,n} \right)} {\left\langle \matrix{
n \cr
j \cr} \right\rangle } \left( \matrix{
m + j + 1 \cr
m + j - n \cr} \right) = \cr
& = \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,n} \right)} {\left\langle \matrix{
n \cr
j \cr} \right\rangle } \left( \matrix{
m + j + 1 \cr
n + 1 \cr} \right) \cr}
$$
Replace the Eulerian Number with its definition, change the notation to meet yours, take care of the
bounds in the sums and you should confirm your formula.