The following inequality for $f$ and $g$ in the unit ball of $L^p$
$$
\lVert f - g \rVert_{p}^{p} \leq C_{p} \left[ \lVert f \rVert_{p}^{p} + \lVert g \rVert_{p}^{p} -2 \left\lVert \frac{f + g}{2} \right\rVert_{p}^{p} \right]^{\min q(p)},
$$
where $q(p)=\min \{1, p/2 \}$,
was shown here.
In our problem, we can assume that $\lVert f_n\rVert_p\leqslant 1$ for all $n$.
Applying the mentioned inequality with $g=f_n$ gives
$$
\lVert f -f_n \rVert_{p}^{p/q(p)}\leq C_{p} \left(\lVert f \rVert_{p}^{p} + \lVert f_n \rVert_{p}^{p} -2 \lVert \frac{f +f_n}{2} \rVert_{p}^{p}\right).
$$
Take the $\limsup_{n\to +\infty}$ and use the assumption and the fact that $h_n=f+f_n\to 2f$ weakly in $L^p$ and
$$
\lVert h\rVert_p^p\leqslant \liminf_{n\to +\infty}\lVert h_n\rVert_p^p.
$$