So I have a set of polynomials, with variables $n_0, n_1, n_2$. I would like to figure out the general formula for these polynomials given the number.
$$f(2) = n_{0} + 2 n_{1} + n_{2}$$ $$f(3) = n_{0}^{3} + 3 n_{0} n_{1}^{2} + 3 n_{1}^{2} n_{2} + n_{2}^{3}$$ $$f(4) = n_{0}^{6} + 4 n_{0}^{3} n_{1}^{3} + 6 n_{0} n_{1}^{4} n_{2} + 4 n_{1}^{3} n_{2}^{3} + n_{2}^{6}$$
$$f(5) = n_{0}^{10} + 5 n_{0}^{6} n_{1}^{4} + 10 n_{0}^{3} n_{1}^{6} n_{2} + 10 n_{ 0} n_{1}^{6} n_{2}^{3} + 5 n_{1}^{4} n_{2}^{6} + n_{2}^{10}$$
$$f(6) = n_{0}^{15} + 6 n_{0}^{10} n_{1}^{5} + 15 n_{0}^{6} n_{1}^{8} n_{2} + 20 n _{0}^{3} n_{1}^{9} n_{2}^{3} + 15 n_{0} n_{1}^{8} n_{2}^{6} + 6 n_{1}^{5} n_{2}^{10} + n_{2}^{15}$$
$$f(7) = n_{0}^{21} + 7 n_{0}^{15} n_{1}^{6} + 21 n_{0}^{10} n_{1}^{10} n_{2} + 35 n_{0}^{6} n_{1}^{12} n_{2}^{3} + 35 n_{0}^{3} n_{1}^{12} n_{2}^{6} + 21 n_{0} n_{1}^{10} n_{2} ^{10} + 7 n_{1}^{6} n_{2}^{15} + n_{2}^{21}$$
As you can see that the coefficients are given by binomial expansion but the variables multiply and have degrees in a non-trivial manner. Is there a pattern to degree and combinations of variables, can a closed-form in the number of constants (i.e $1,2,3,4 ..$) be achieved ?? I can post a larger list of polynomials if needs be.