Consider the following equation,
$$\sqrt{\frac{\sqrt{x!}\times \sqrt{x!!}\times \sqrt{x!!!}}{\sqrt{\left( x-2 \right)!+x}}}=12$$ I tried first to eliminates all radicals using squring both sides to get the following , $$\frac{\sqrt{x!}\times \sqrt{x!!}\times \sqrt{x!!!}}{\sqrt{\left( x-2 \right)!+x}}={{12}^{2}}\Leftrightarrow \frac{\sqrt{x!\times x!!\times x!!!}}{\sqrt{\left( x-2 \right)!+x}}=\frac{x!\times x!!\times x!!!}{\left( x-2 \right)!+x}={{12}^{4}}$$
Now how will continue attacking this problem?