Consider the function:
$$\mathcal I(a)=\int_c^x\frac{\mathrm dt}{t^4+a^4}\tag{1}$$
where $c\in\mathbb R$ such that it is a root of the primitive function without the arbitrary constant(see below). This integral is easily doable(albeit slightly tedious) and comes out to be:
$$\mathcal I(a)=\frac1{2\sqrt2}\tan^{-1}\left(\frac{x^2-a^2}{\sqrt2ax}\right)+\frac1{4\sqrt2}\ln\left|\frac{x^2-\sqrt2ax+a^2}{x^2+\sqrt2ax+a^2}\right|\tag{2}$$
which can also be expressed in terms of the inverse hyperbolic tangent function when $\frac{x^2+a^2}{\sqrt2ax}$ is in $(-1,1)$, and when not, in terms of inverse hyperbolic cotangent.
$\mathcal I’(a)$ can be obtained in $2$ ways:
$1.$ $\textbf{From $(1)$:}$
$$\mathcal I’(a)=-4a^3 \int_c^x\frac{\mathrm dt}{(t^4+a^4)^2}$$
$2.$ $\textbf{From $(2)$:}$
$$\mathcal I’(a)=\frac{\mathrm d}{\mathrm da}\left(\frac1{2\sqrt2}\tan^{-1}\left(\frac{x^2-a^2}{\sqrt2ax}\right)+\frac1{4\sqrt2}\ln\left|\frac{x^2-\sqrt2ax+a^2}{x^2+\sqrt2ax+a^2}\right|\right)=\cdots$$
This differentiation will be somewhat tedious but the mess can be reduced by rewriting it as:
$$\mathcal I’(a)=\begin{cases}\frac{\mathrm d}{\mathrm da}\left(\frac1{2\sqrt2}\tan^{-1}\left(\frac{\frac{x}{a}-\frac{a}{x}}{\sqrt2}\right)+\frac1{2\sqrt2}\tanh^{-1}\left(\frac{\frac{x}{a}+\frac{a}{x}}{\sqrt2}\right)\right), \frac{x^2+a^2}{\sqrt2ax}\in(-1,1)\\ \frac{\mathrm d}{\mathrm da}\left(\frac1{2\sqrt2}\tan^{-1}\left(\frac{\frac{x}{a}-\frac{a}{x}}{\sqrt2}\right)+\frac1{2\sqrt2}\coth^{-1}\left(\frac{\frac{x}{a}+\frac{a}{x}}{\sqrt2}\right)\right), \frac{x^2+a^2}{\sqrt2ax}\in(-\infty,-1)\cup(1,\infty)\end{cases}$$
Since the derivatives of $\tanh^{-1}x$ and $\coth^{-1}x$ are the same, the final expression for $\mathcal I’(a)$ will be a single continuous function and not piecewise.
Then, compare the $2$ results, use the $2^\text{nd}$ part of the FTC to transform $\mathcal I(a)$ into an indefinite integral, and finally put $a=1$ to obtain the answer to your integral.