find the value of the integral $\int ^{\infty}_0\dfrac{e^{3x}}{(e^x+e^{5x})^2}dx$
$\int ^{\infty}_0\dfrac{e^{3x}}{(e^x+e^{5x})^2}dx=\int ^{\infty}_0\dfrac{e^{x}}{(1+e^{4x})^2}dx$
let $e^{x} = t \implies e^{x}dx=dt$
So
$$\int ^{\infty}_0\dfrac{e^{x}}{(1+e^{4x})^2}dx= \int ^{\infty}_0 \dfrac{dt}{(1+t^4)^2}$$
How to solve in terms of beta or gamma