Let $U \in \mathbb{R}^k$ and $V\in \mathbb{R}^k$ be two independent standard normal vectors (i.e., $U \sim \mathcal{N}(0,I)$ and $U \sim \mathcal{N}(0,I)$ ). Define a set $S$ as \begin{align} S=\{ x \in \mathbb{R}^k: x_1 \le x_2 \le x_3 \le ... \le x_k \} \end{align}
Our goal is to find an order tight bound on $\mathbb{P}[ U+V \in S, V \in S]$.
Here are some preliminary bounds.
Upper Bound: Using monotonicty of probability measure \begin{align} \mathbb{P}[ U+V \in S, V \in S] \le \min (\mathbb{P}[ U+V \in S],\mathbb{P}[ V \in S])=\min \left(\frac{1}{k!} ,\frac{1}{k!} \right)=\frac{1}{k!} . \end{align}
Lower Bound: \begin{align} \mathbb{P}[ U+V \in S, V \in S] \ge \mathbb{P}[ U \in S, V \in S]= \left( \frac{1}{k!} \right)^2 \end{align} where we have used that $ U \in S, V \in S \Rightarrow U+V \in S, V \in S$.
Note that the orders are very different here. This question is inspired by something that I asked earlier here.