Let $U \in \mathbb{R}^k$ and $V\in \mathbb{R}^k$ be two independent standard normal vectors (i.e., $U \sim \mathcal{N}(0,I)$ and $U \sim \mathcal{N}(0,I)$ ). Define a set $S$ as \begin{align} S=\{ x \in \mathbb{R}^k: x_1 \le x_2 \le x_3 \le ... \le x_k \} \end{align}
We are interested in computing the following conditional expectation \begin{align} E\left[ \|U\|^2 \mid U+V \in S , V\in S \right]. \end{align}
My guess is that, most likely, there is no closed-form expression, so an upper bound would be also fine.
One upper bound I that I tried is via Cauchy-Schwarz: \begin{align} E\left[ \|U\|^2 \mid U+V \in S , V\in S \right]&= \frac{E\left[ \|U\|^2 1_{ \{ U+V \in S , V\in S \}} \right] }{P [ U+V \in S , V\in S ]}\\ &\le \frac{ \sqrt{E\left[ \|U\|^4 \right]} \sqrt{ P [ U+V \in S , V\in S ]} }{P [ U+V \in S , V\in S ]}\\ &= \frac{ \sqrt{E\left[ \|U\|^4 \right]} }{\sqrt{ P [ U+V \in S , V\in S ]}}. \end{align}
Now computing $E\left[ \|U\|^4 \right]$ is simple. However, $P [ U+V \in S , V\in S ]$ is not so much. I tried using inclusion-exclusion principle \begin{align} P [ U+V \in S , V\in S ]&= P [ U+V \in S ]+ P [ V\in S ]- P [ U+V \in S \text{ or } V\in S ]\\ &= \frac{2}{k!}-P [ U+V \in S \text{ or } V\in S ] \end{align} where we used that $P [ U+V \in S ]= P [ V\in S ]=\frac{1}{k!}$