Considering a basic introductory example involving ODEs we can present the problem as.
Given the dynamic system
$$
\cases{
\dot x = f(x,t,\theta)\\
y = h(x,t,\theta)
}
$$
with initial conditions $x(0)=g(\theta)$
with $x = (x_1,\cdots,x_n), \ y = (y_1\cdots,y_m), \ \theta=(\theta_1,\cdots,\theta_p)$. Here $h()$ is the observation function and $\theta$ the unknown parameters. The measured data are the points $(t_k, \bar y_k), \{k = 1,\cdots, N\}$
Find
$$
\theta^* = \arg\min\cal{E}(\theta)
$$
with
$$
\cal{E}(\theta) = \frac{1}{2}\sum_{j=1}^{N}\sum_{i=1}^{m}(\bar y_{i,j}-y_i(t_j,\theta))^2
$$
Methods using the steepest descent direction can be used to find $\theta^*$. Those methods use the error gradient direction or
$$
\Delta_{\theta} \cal{E}(\theta) = \sum_{j=1}^{N}\sum_{i=1}^{i=m}(\bar y_{i,j}-y_i(t_j))\frac{\partial y_i(t_j,\theta)}{\partial\theta}
$$
or
$$
\Delta_{\theta} \cal{E}(\theta) = \sum_{j=1}^{N}\sum_{i=1}^{i=m}(\bar y_{i,j}-h_i(x,t_j,\theta))\frac{\partial h_i(x,t_j,\theta)}{\partial\theta}
$$
here the quantities
$$
\frac{\partial h_i(x,t_j,\theta)}{\partial \theta}
$$
are calculated as follows.
$$
\begin{array}{ccl}
\frac{\partial\dot x}{\partial\theta} & = & \frac{\partial f}{\partial x}\frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial\theta}\\
\frac{\partial y}{\partial \theta} & = & \frac{\partial h}{\partial x}\frac{\partial x}{\partial \theta}+\frac{\partial h}{\partial \theta}
\end{array}
$$
now calling
$$
s^x_{\theta}=\frac{\partial x}{\partial \theta},\ \ s^y_{\theta}=\frac{\partial y}{\partial \theta}
$$
we have
$$
\begin{array}{ccl}
\dot s^x_{\theta} & = & \frac{\partial f}{\partial x}s^x_{\theta}+\frac{\partial f}{\partial \theta}\\
s^y_{\theta} & = & \frac{\partial h}{\partial x}s^x_{\theta}+\frac{\partial h}{\partial \theta}
\end{array}
$$
having unknown initial conditions, then also
$$
s^x_{\theta}(0)=\frac{\partial g}{\partial \theta}
$$
- Case study. Consider the dynamic system
$$
\begin{array}{rcl}
\dot v & = & c(v-\frac{1}{3}v^3+r) \\
\dot r & = & -\frac{1}{c}(v-a+b r) \\
y_1 & = & v \\
y_2 & = & r
\end{array}
$$
with $v(0)=v_0,\ r(0)=r_0$
We have $\theta=\{a,b,c,v_0, r_0\}$. $x=\{x_1,x_2\}=\{v,r\}$, $\theta=\{\theta_1,\dots,\theta_5\}$, $h_1 = x_1,\ \ h_2 = x_2$ and $x_1(0)=\theta_4,\ x_2(0)=\theta_5$, $y=\{y_1,y_2\}$
then
$$
\frac{\partial f}{\partial x} = \left(
\begin{array}{cc}
\theta _3 \left(1-x_1^2\right) & \theta_3 \\
-\frac{1}{\theta_3} & -\frac{\theta_2}{\theta_3} \\
\end{array}
\right)
$$
$$
\frac{\partial f}{\partial \theta} = \left(
\begin{array}{ccccc}
0 & 0 & -\frac{1}{3} x_1^3+x_1+x_2 & 0 & 0 \\
\frac{1}{\theta_3} & -\frac{x_2}{\theta _3} & \frac{-\theta_1+x_1+\theta _2 x_2}{\theta_3^2} & 0 & 0 \\
\end{array}
\right)
$$
$$
\frac{\partial y}{\partial x} = \left(
\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\end{array}
\right)
$$
$$
\frac{\partial y}{\partial \theta} = \left(
\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
$$
The procedure to obtain the error gradient is as follows:
- Given a vector of parameters $\theta_k$, integrate $x^k=x(t,\theta_k)$ , $y^k= y(t,\theta_k)$,$s^x_{\theta}(t,\theta_k)$ and $s^y_{\theta}(t,\theta_k)$
- Calculate $\Delta_{\theta} \cal{E}(\theta_k)$
The following set of DEs, solve the items (1,2)
$$
\begin{array}{rcl}
x_1' & = & \theta_3 \left(-\frac{1}{3}x_1^3+x_1+x_2\right) \\
x_2' & = & -\frac{-\theta_1+\theta_2 x_2+x_1}{\theta_3} \\
\underset{1}{\overset{1}{s_x}}' & = & \theta_3\underset{1}{\overset{2}{s_x}}+\theta_3\underset{1}{\overset{1}{s_x}}\left(1-x_1^2\right) \\
\underset{2}{\overset{1}{s_x}}' & = & \theta_3\underset{2}{\overset{2}{s_x}}+\theta_3\underset{2}{\overset{1}{s_x}}\left(1-x_1^2\right) \\
\underset{3}{\overset{1}{s_x}}' & = & \theta_3\underset{3}{\overset{2}{s_x}}+\theta_3\underset{3}{\overset{1}{s_x}}\left(1-x_1^2\right)-\frac{1}{3}
x_1^3+x_1+x_2 \\
\underset{4}{\overset{1}{s_x}}' & = & \theta_3\underset{4}{\overset{2}{s_x}}+\theta_3\underset{4}{\overset{1}{s_x}}\left(1-x_1^2\right) \\
\underset{5}{\overset{1}{s_x}}' & = & \theta_3\underset{5}{\overset{2}{s_x}}+\theta_3\underset{5}{\overset{1}{s_x}}\left(1-x_1^2\right) \\
\underset{1}{\overset{2}{s_x}}' & = &
\frac{1}{\theta_3}-\frac{\underset{1}{\overset{1}{s_x}}}{\theta_3}-\frac{\theta_2\underset{1}{\overset{2}{s_x}}}{\theta_3}\\
\underset{2}{\overset{2}{s_x}}' & = & -\frac{\underset{2}{\overset{1}{s_x}}}{\theta_3}-\frac{\theta_2 \underset{2}{\overset{2}{s_x}}}{\theta_3}-\frac{x_2}{\theta_3}\\
\underset{3}{\overset{2}{s_x}}' & = & -\frac{\underset{3}{\overset{1}{s_x}}}{\theta_3}-\frac{\theta_2 \underset{3}{\overset{2}{s_x}}}{\theta_3}+\frac{-\theta_1+\theta_2 x_2+x_1}{\theta_3^2}\\
\underset{4}{\overset{2}{s_x}}' & = & -\frac{\underset{4}{\overset{1}{s_x}}}{\theta_3}-\frac{\theta_2 \underset{4}{\overset{2}{s_x}}}{\theta_3}\\
\underset{5}{\overset{2}{s_x}}' & = & -\frac{\underset{5}{\overset{1}{s_x}}}{\theta_3}-\frac{\theta_2 \underset{5}{\overset{2}{s_x}}}{\theta_3}\\
\end{array}
$$
with initial conditions
$$
\begin{array}{c}
x_1(0) = \theta_4, x_2(0) = \theta_5 \\
\underset{1}{\overset{1}{s_x}}(0) = 0,\underset{2}{\overset{1}{s_x}}(0) = 0,\underset{3}{\overset{1}{s_x}}(0) = 0,\underset{4}{\overset{1}{s_x}}(0) = 1,\underset{5}{\overset{1}{s_x}}(0) = 0\\ \\
\underset{1}{\overset{2}{s_x}}(0) = 0,\underset{2}{\overset{2}{s_x}}(0)= 0,\underset{3}{\overset{2}{s_x}}(0) = 0,\underset{4}{\overset{2}{s_x}}(0) = 0,\underset{5}{\overset{2}{s_x}}(0) = 1
\end{array}
$$
There are many variants involving the smoothing process. We can utilize instead of minimum square error, other statistical error measures like the maximum likelyhood estimation, etc.
The following reference is a good step into the smoothing problem. Those smoothing problems involving DE's parameters determination are also known as inverse problems