let $$F(n) = \sum_{i=1}^{\infty} f(n,i)$$
Notice that $$f(n,i) = \lfloor\frac{n}{i}\rfloor = Card\{j | j\cdot i\leq n\} $$
So $$F(n) = \sum_{i=1}^{\infty} Card\{j | j\cdot i\leq n\} = Card\{(i,j) | j\cdot i\leq n\}$$
The trick is to split this set in two not disjoint parts :
$$\{(i,j) | j\cdot i\leq n\} = \{(i,j) | j\leq \lfloor\sqrt n\rfloor,j\cdot i\leq n\} \cup \{(i,j) | i\leq \lfloor\sqrt n\rfloor,j\cdot i\leq n\} $$
Name these sets : $$ S = A \cup B$$
So
$$F(n) = Card(S) = Card(A\cup B) = Card(A)+Card(B)-Card(A\cap B)$$
A and B are symetrical, so their cardinality is the same, and $Card(A\cap B) = \lfloor\sqrt n\rfloor^2$, So
$$F(n) = 2\sum_{i=1}^{\lfloor\sqrt n\rfloor} \lfloor\frac{n}{i}\rfloor - \lfloor\sqrt n\rfloor^2 $$