Fix some $σ>2/(3\sqrt{3})$, let $M$ be the interval $[x_-,x_+]$, where $$x_- = \text{unique real root of $x^3 + \sigma = x$}$$ and $$x_+ = \text{unique real root of $x^3 - \sigma = x$}.$$ Moreover, define the set $$V_x=\{z\in \mathbb{R};\ z = x^3+\omega \sigma,\ \mbox{for some $\omega\in[-1,1]$}\}.$$
Consider the Banach Space $\left(\mathcal C^0(M),\|\cdot\|_\infty\right)$. Where $$\mathcal C^0(M):=\{f:M\to\mathbb{R};f\ \text{is continuous}\}\ \mbox{and }\|\phi\|_\infty=\sup_{x\in M}|\phi|.$$
Now, define the continuous linear map \begin{align*} T: \mathcal C^0(M)&\to \mathcal{C}^0 (M)\\ \varphi&\mapsto \left(x\mapsto\int_{V_x\cap M}\varphi(y)\text{d} y\right). \end{align*}
My Question: Is it possible to guarantee that the continuous linear operator $T$ has a positive spectral radius?
Remark: It is possible to show that $T$ is a compact operator.