(i) Showing the three properties for an equivalence relation :
1) Reflexivity: Let $m \in \mathbb{Z}^+$, then $ m \sim m$ as $m = m^q$ with $q=1$.
2) Symmetry: Let $m,n \in \mathbb{Z}$ then if $m \sim n \Rightarrow \ \exists\ q \in \mathbb{Q}^+ $ such that $ m^q = n$, then $ n^{\frac{1}{q}} = m$ and $\frac{1}{q} \in \mathbb{Q}^+$. Hence $n \sim m$.
3) Transitivity: Let $l,m,n \in \mathbb{Z}^+$ with $l \sim m$ and $m \sim n$, then $\exists$ $p,q \in \mathbb{Q}^+$ such that $ l^p = m, m^q =n \Rightarrow (l^p)^q = l^{pq} = n$, since $pq \in \mathbb{Q}^+$, hence $l \sim n$.
(ii) The class $[9]$ will have numbers $x$ in $\mathbb{Z}^+$ such that $x \sim 9$.
The smallest such numbers will be $3,9,27,81,243.$ There can be only those numbers which are some power of $3$, there should be no factor of $2$ since $2^q \ne 9 = 3^2$ for any $q \in \mathbb{Q}^+$.
Hope this helps.