To distinguish between points and tangent vectors, let $p=(p_1,...,p_n)\in \mathbb{R}^n$ a point of $\mathbb{R}^n$ and $v=(v_1,...,v_n)\in T_p(\mathbb{R}^n)$ a point of the tangent space $\mathbb{R}^n$.
The line through $p=(p_1,...,p_n)\in \mathbb{R}^n$
with direction $v=(v_1,...,v_n)\in T_p(\mathbb{R}^n)$ has parametrization $a(t)=(p_1+tv_1,...,p_n+tv_n)$.
If f is $C^\infty$ in a neighborhood of $p\in \mathbb{R}^n$ and $v$ is a tangent vector at $p$, define the directional derivative of $f$ in the direction of $v$ at $p$ as
$$D_vf=\lim\limits_{t \to 0} \frac{f(a(t))-f(p)}{t}.$$
By the multi-variable chain rule, we have $$D_vf=\sum_{i=1}^{n} \frac{da^i}{dt}(0)\frac{\partial f}{\partial x^i}(p)=\sum_{i=1}^{n} v_i\frac{\partial f}{\partial x^i}(p).$$
Of course in the above notation $D_vf$, the partial derivatives are evaluated at $p$, since v is a vector at $p$. Now, we can define a map $D_v$ (which assigns to every
f which is $C^\infty$ the real number $D_v(f)$ ) with the natural way
$$D_v=\sum_{i=1}^{n} v_i\frac{\partial }{\partial x^i}(p)=\sum_{i=1}^{n} v_i\frac{\partial }{\partial x^i}\Bigr\rvert_{p}.$$
This map $D_v\in \mathcal{D}_p(\mathbb{R}^n)$ is in fact a derivation at $p$.
Finally, you can show that the map
\begin{align}
\phi :T_p(\mathbb{R}^n) &\to \mathcal{D}_p(\mathbb{R}^n) \\
v &\to D_v
\end{align}
is a linear isomorphism of vector spaces (for surjectivity, you can use Taylor's theorem).
So the answers to your questions are:
3) Υes, you can see every tangent vector $v \in T_p(\mathbb{R}^n)$ as a derivation $D_v\in \mathcal{D}_p(\mathbb{R}^n)$ using the isomorphism $\phi$.
2) Since $e_1,...,e_n$ is the canonical basis of $T_p(\mathbb{R}^n)$ and $\phi$ is an isomorphism, then $\phi(e_1),...,\phi(e_n)$ is a basis of $D_v\in \mathcal{D}_p(\mathbb{R}^n)$. But $\phi(e_i)=\frac{\partial }{\partial x^i}\Bigr\rvert_{p}$, hence $\{\frac{\partial }{\partial x^i}\Bigr\rvert_{p}\}_{i=1}^n$
is a basis of the tangent space
$\mathcal{D}_p(\mathbb{R}^n)\simeq T_p(\mathbb{R}^n)$.
1) As a result, you can say that the basis of $T_p(\mathbb{R}^n)$ is $\{\frac{\partial }{\partial x^i}\Bigr\rvert_{p}\}_{i=1}^n$. You can say all that because of $\phi$.