I'm trying to compute the inverse Laplace transform of a function:
$$ g(s)=e^{-\tau s\sqrt{\frac{s+q}{s+p}}} $$
where $\tau$, $p$ and $q$ are all positive real numbers, and $q>p$. The ILT is given by:
$$ \mathcal{L}^{-1}\left[g(s)\right] = \frac{1}{2\pi i}\int_{\epsilon-i\infty}^{{\epsilon-i\infty}}dse^{ts}e^{-\tau s\sqrt{\frac{s+q}{s+p}}} $$
I chose a deformed integral contour avoiding the branch cut of $g(s)$ to evaluate the Bromwich integration. integral contour
The integrals along $C_2$, $C_{10}$, $C_{4}$, $C_{8}$ and $C_{6}$ all vanish as the radius of the large circle goes to infinity and that of the small circle goes to 0. The integrals over $C_3$ and $C_9$ cancel each other. Letting $s=-p+(x-p)e^{i\pi}$ over $C_5$ and $s=-p+(x-p)e^{-i\pi}$ over $C_7$, I get this result:
$$ \mathcal{L}^{-1}\left[g(s)\right]=-\frac{1}{2\pi i}\int_q^pdx e^{-tx}e^{i\tau x\sqrt{1+\frac{p-q}{x-p}}}+\frac{1}{2\pi i}\int_q^pdx e^{-tx}e^{-i\tau x\sqrt{1+\frac{p-q}{x-p}}} =-\frac{1}{\pi i}Im\left(\int_q^pdx e^{-tx}e^{i\tau x\sqrt{1+\frac{p-q}{x-p}}}\right) $$
Is my derivation correct? And does anyone know how to evaluate this integration?