For future viewers, here is how I solved it, using Kavi Rama Murthy's hint:
\begin{align*}
\mathbb{E}(X^2) &= \displaystyle{\sum_{k=0}^\infty} k^2 \ \displaystyle{\binom{r+k-1}{k} }p^r(1-p)^k\\[0.3em]
&= \displaystyle{\sum_{k=1}^\infty} k^2 \ \frac{(r+k-1)!}{(r-1)! k!}p^r(1-p)^k\\[0.3em]
&= \displaystyle{\sum_{k=1}^\infty} k \ \frac{(r+k-1)!}{(r-1)! (k-1)!}p^r(1-p)^k\\[0.3em]
&= \displaystyle{\sum_{k=0}^\infty} (k+1) \ \frac{(r+k)!}{(r-1)! k!}p^r(1-p)^{k+1}\\[0.3em]
&= \displaystyle{\sum_{k=0}^\infty} k \ \frac{(r+k)!}{(r-1)! k!}p^r(1-p)^{k+1} + \displaystyle{\sum_{k=0}^\infty} \ \frac{(r+k)!}{(r-1)! k!}p^r(1-p)^{k+1}\\[0.3em]
&= \displaystyle{\sum_{k=1}^\infty} \ \frac{(r+k)!}{(r-1)! (k-1)!}p^r(1-p)^{k+1} + \displaystyle{\sum_{k=0}^\infty} \ \frac{(r+k)!}{(r-1)! k!}p^r(1-p)^{k+1}\\[0.3em]
&= \underbrace{\displaystyle{\sum_{k=0}^\infty} \ \frac{(r+k+1)!}{(r-1)! k!}p^r(1-p)^{k+2}}_{=: \ a} + \underbrace{\displaystyle{\sum_{k=0}^\infty} \ \frac{(r+k)!}{(r-1)! k!}p^r(1-p)^{k+1}}_{=: \ b}\\[0.3em]
\end{align*}
Now we solve $a$ and $b$ individually:
(a)
\begin{align*}
\displaystyle{\sum_{k=0}^\infty} \ \frac{(r+k+1)!}{(r-1)! k!}p^r(1-p)^{k+2} &= \displaystyle{\sum_{k=0}^\infty} \ \frac{(r+2+k-1)!}{(r-1)! k!}p^r(1-p)^{k+2} \\[0.3em]
&= \displaystyle{\sum_{k=0}^\infty} \ \frac{(r+2+k-1)!}{(r-1)! k!} \frac{(r+2-1)!}{(r+2-1)!}p^r(1-p)^{k+2}\\[0.3em]
&= \frac{(r+1)!(1-p)^2}{(r-1)!p^2} \underbrace{\displaystyle{\sum_{k=0}^\infty} \binom{r+2+k-1}{k} p^{r+2} (1-p)^k}_{=1}\\[0.3em]
&= r(r+1)\left(\frac{1-p}{p}\right)^2
\end{align*}
(b)
\begin{align*}
\displaystyle{\sum_{k=0}^\infty} \ \frac{(r+k)!}{(r-1)! k!}p^r(1-p)^{k+1} &= \displaystyle{\sum_{k=0}^\infty} \ \frac{(r+1+k-1)!}{(r-1)! k!}p^r(1-p)^{k+1} \\[0.3em]
&= \displaystyle{\sum_{k=0}^\infty} \ \frac{(r+1+k-1)!}{(r-1)! k!} \frac{(r+1-1)!}{(r+1-1)!}p^r(1-p)^{k+2}\\[0.3em]
&= \frac{r(1-p)}{p} \underbrace{\displaystyle{\sum_{k=0}^\infty} \binom{r+1+k-1}{k} p^{r+1} (1-p)^k}_{=1}\\[0.3em]
&= \frac{r(1-p)}{p} \end{align*}
then, also using the fact that $\mathbb{E}(X)= \frac{r(1-p)}{p}$, we can finally compute the variance:
\begin{align*}
\operatorname{Var}(X) &= \mathbb{E}(X^2)-[\mathbb{E}(X)]^2\\
&= \left[ r(r+1)\left(\frac{1-p}{p}\right)^2 + \frac{r(1-p)}{p} \right] - \left( \frac{r(1-p)}{p}\right)^2\\
&= \frac{r(1-p)}{p^2}.
\end{align*}