Find the Var$(X)$ given that $$m_X(u)=\Big(\frac{p}{1-(1-p)e^u)}\Big)^r \ \ \ \ \ \ \ u<\text{ln}((1-p)^{-1})$$
I have found $\mathbb{E}(X)$ to be $$\mathbb{E}(X)=m'_X(u)$$ $$\mathbb{E}(X)=r\Bigg(\frac{p}{(1-(1-p)e^u)}\Bigg)^{r-1}\times\frac{p(e^u-pe^u)}{(1-(1-p)e^u)^2}$$ substituting $u=0$ $$\mathbb{E}(X)=r\Bigg(\frac{p}{p}\Bigg)^{r-1}\times\frac{p(1-p)}{p^2}=\frac{r(1-p)}{p}$$
My question is, how do I find $\mathbb{E}(X^2)$? Differentiating $\mathbb{E}(X)$ again seems like it's impossible.