I just generalize your question a little and put $a$ instead of $2$ and $b$ instead of $3$ in the integrand. You should do the integration by parts twice
$$\eqalign{
& I = \int {{e^{a\theta }}} \;\sin b\theta \;d\theta \cr
& \,\,\,\, = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over a}\int {{e^{a\theta }}\cos b\theta \,d\theta } \cr
& \,\,\,\, = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over a}\left[ {{1 \over a}{e^{a\theta }}\cos b\theta + {b \over a}\int {{e^{a\theta }}\sin b\theta d\theta} } \right] \cr
& \,\,\,\, = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over a}\left[ {{1 \over a}{e^{a\theta }}\cos b\theta + {b \over a}I} \right] \cr
& \,\,\,\, = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over {{a^2}}}{e^{a\theta }}\cos b\theta - {{{b^2}} \over {{a^2}}}I \cr} $$
and then solve for $I$. This will result in
$$\eqalign{
& {{{a^2} + {b^2}} \over {{a^2}}}I = {1 \over a}{e^{a\theta }}\sin b\theta - {b \over {{a^2}}}{e^{a\theta }}\cos b\theta \cr
& I = {a \over {{a^2} + {b^2}}}{e^{a\theta }}\sin b\theta - {b \over {{a^2} + {b^2}}}{e^{a\theta }}\cos b\theta \cr} $$
Or equivalently
$$\boxed{I = {1 \over {{a^2} + {b^2}}}{e^{a\theta }}\left[ {a\sin b\theta - b\cos b\theta } \right]}$$