0

Suppose given a exact sequence, $$0 \to A\xrightarrow{\enspace f\enspace} B\xrightarrow{\enspace g\enspace} C\to 0$$ I want to show the sequence,$\DeclareMathOperator{\Hom}{Hom}$ $$0→\Hom_R(N,A) \xrightarrow{\enspace f_*\enspace}\Hom_R(N,B)\xrightarrow{\enspace g_*\enspace} \Hom_R(N,C)$$ is also exact.

Here $f_*:\Hom_R(N,A)\to \Hom_R(N,B)$ is defined to be, $$f_*:f\mapsto h\circ f$$where $h$ is a $R$-homomorphism from $A$ to $B$.

I'm having trouble proving exactness at both points. Please help. Thanks!

Bernard
  • 179,256
gws
  • 615
  • 5
  • 12

0 Answers0