It is easy to show from your first inequality that the upper bound for $f$ on $[a,b]$ is $M = \max(f(a),f(b))$.
To find a lower bound, write $x = \frac{a+b}{2} + \theta$. Since $\frac{a+b}{2} = \frac{1}{2} \left(\frac{a+b}{2} + \theta \right) + \frac{1}{2} \left(\frac{a+b}{2} - \theta \right) $, we have by convexity
$$f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{2}f \left(\frac{a+b}{2} + \theta \right) + \frac{1}{2}f \left(\frac{a+b}{2} - \theta \right),$$
and for all $x \in [a,b]$,
$$f(x) = f\left(\frac{a+b}{2} + \theta \right) \geqslant 2f\left(\frac{a+b}{2}\right)- f \left(\frac{a+b}{2} - \theta \right)$$
But from the upper bound we have $-f \left(\frac{a+b}{2} - \theta \right) \geqslant -M$, and it follows that
$$f(x) \geqslant 2f\left(\frac{a+b}{2}\right)-M = m,$$
providing a lower bound $m$ for $f$ on $[a,b].$