I know that the site has evidence of this statement, but I want to check my own proof.
$\textbf{Lemma 1}$ Uniqueness of the zero vector.
$\textbf{Proof}$: $\overline{\theta_1} = \overline{\theta_1} + \overline{\theta_2} = \overline{\theta_2} + \overline{\theta_1} = \overline{\theta_2}$
$\textbf{Lemma 2}$ For any vector there is a single inverse vector.
$\textbf{Proof}$: $-\overline{x_1} = -\overline{x_1} + \overline{\theta} = - \overline{x_1} + (\overline{x} -\overline{x_2}) = - \overline{x_1} + \overline{x} -\overline{x_2} = \overline{\theta} -\overline{x_2} = -\overline{x_2}$
$\textbf{Lemma 3}$ The product of any vector by the neutral element of the additive group of the field is the zero vector.
$\textbf{Proof}$: $0 \cdot \overline{x} = 0 \cdot \overline{x} + \overline{\theta} = 0 \cdot \overline{x} + (\overline{x} - \overline{x}) = \overline{x}(0 + 1) - \overline{x} = \overline{x} - \overline{x} = \overline{\theta}$
$\textbf{Lemma 4}$: The product of the zero vector on any field element is equal to the zero vector.
$\textbf{Proof}$: $\alpha\cdot\overline{\theta} = \alpha\cdot(0\cdot\overline{x}) = (\alpha \cdot 0)\cdot \overline{x} = 0\cdot \overline{x}$
$\textbf{Lemma 5}$: If $\lambda \neq 0$ and $\overline{x} \neq \overline{\theta}$ the $\lambda\cdot\overline{x}\neq\overline{\theta}$.
$\textbf{Proof}$: Suppose it is not a true and we can have $\lambda\cdot\overline{x} = \overline{\theta}$, where $\lambda\neq 0$ and $\overline{x}\neq\overline{\theta}$. $\overline{x} = 1\cdot\overline{x} = (\frac{1}{\lambda}\cdot\lambda)\overline{x} = \frac{1}{\lambda} \cdot (\lambda\cdot \overline{x}) = \frac{1}{\lambda}\cdot \overline{\theta} = \overline{\theta}$ -- contradiction.
$\textbf{Lemma 6}$: In any set of linearly independent vectors, there is no zero vector.
$\textbf{Proof}$: $\sum_{i=1}^{n}\lambda_i\overline{x_i} = \overline{\theta}$ and one of the $\exists \overline{x_j}\in \{\overline{x_n}\}, \overline{x_j} = \overline{\theta}$ $\Rightarrow$ $\lambda_j$ can be $\neq 0$ $\Rightarrow$ $\{\overline{x_n}\}$ -- linear dependent.
$\textbf{Lemma 7}$ The representation of the zero vector in any basis is unique.
$\textbf{Proof}$: Assume that it is not true: $\sum_{i=1}^{n}\lambda_i\overline{x_i} = \overline{\theta}$, where one of the $\lambda_j \neq 0$ $\Rightarrow$ $\lambda_j\overline{x_j} = 0$, but by Lemma 5 and Lemma 6 it is impossible.
$\textbf{Theorem}$: All basis holds same number of elements.
$\textbf{Proof}$: If we have two basis $\{\overline{e_n}\}$ and $\{\overline{e'_m}\}$, where $m > n$. So we can represent the vectors of the second basis by vectors of the first basis: $\overline{e'_k} = \sum_{i=1}^{n}\lambda_{ik}\overline{e_i}$, where $k=1,\cdots,m$ and for any vector $\overline{x}$ in this space will be true that $\overline{x} = \sum_{k=1}^{m}\lambda_k\overline{e'_k} = \sum_{k=1}^{m}\lambda_k\sum_{i=1}^{n}\alpha_{ik}\overline{e_i} =\sum_{i=1}^{n}(\sum_{k=1}^{m}\lambda_k \alpha_{ik})\overline{e_i} $. The zero vector $\overline{\theta}$ has the unique representation in the basis $\{\overline{e_i}\}$, $\overline{\theta} = \sum_{i=1}^{n}0_i\overline{e_i}$. Therefore, the condition $\sum_{k=1}^{m}\lambda_k\overline{e'_k} = 0$ is equivalent to system of linear equations for $\lambda_k$: $\sum_{k=1}^{m}\lambda_k\alpha_{ik} = 0$, where $i=1,\cdots,n$. Since the number of $\{\lambda_k\}=m$ is greater than the number of equations $=n$, this system has a non-zero solution. This contradicts to the Lemma 7.