Assume that $$ (\alpha_1,\cdots, \alpha_n)\supseteq
(\beta_1,\cdots, \beta_m) \Rightarrow n \geq m $$
where $\{ \alpha_i\} $, $\{\beta_i\}$ are linearly independent.
Proof : Assume that $ (\alpha_1) \supseteq (\beta_1,\cdots,
\beta_m),\ m>1 $ So $ \beta_1=c_1\alpha_1,\ \beta_2=c_2\alpha_1$ so
that $\{ \beta_i\}_{i=1}^2$ is dependent. Contradiction.
We will use induction : $n=k$ is fine. Then let $$ (\alpha_1,\cdots,
\alpha_{k+1})\supseteq (\beta_1,\cdots, \beta_m),\ m>k+1
$$
Clearly we have $c_{ij}$ : $$ \beta_j:= \sum_i c_{ji}\alpha_i$$ Note
that for some $j$, $c_{j1}\neq 0$. If not $$ (\alpha_2,\cdots,
\alpha_{k+1})\supseteq (\beta_1,\cdots, \beta_m) $$ So we have
$k\geq m$.
Let $c_{11}\neq 0$. Then $$ (\beta_2- \frac{c_{21}}{c_{11}}
\beta_1,\cdots, \beta_m-\frac{c_{m1}}{c_{11}} \beta_1 )\subset
(\alpha_2,\cdots , \alpha_{k+1})$$
Note that $\{ \beta_2- \frac{c_{21}}{c_{11}} \beta_1,\cdots,
\beta_m-\frac{c_{m1}}{c_{11}} \beta_1 \}$ is linearly independent.
So $ k\geq m-1$. Thus we have a contradiction.