I was sent this problem by a friend, they say it is a year 6 question. Using trigonometry I got the shaded area as $4 - \frac{\pi}{3}$.
Now Year six, I doubt if they do trigonometry. Is there another approach out there?
I was sent this problem by a friend, they say it is a year 6 question. Using trigonometry I got the shaded area as $4 - \frac{\pi}{3}$.
Now Year six, I doubt if they do trigonometry. Is there another approach out there?
Label the vertices as shown in the diagram. $\tan\alpha=\frac{1}{2}\implies \tan 2\alpha=\frac{4}{3}\implies 2\alpha=\tan^{-1}(\frac{4}{3})$
$\therefore$ Area of circular sector$ BAG=8\tan^{-1}(\frac{4}{3})$
Area of $\triangle AGC=16\cos\alpha\sin\alpha=8\sin2\alpha=\frac{32}{5}$
Thus, area of curved figure $BEG=\frac{48}{5}-8\tan^{-1}(\frac{4}{3})$
Therefore, Area of shaded part$=\frac{1}{2}$ (Area of $BEFC$)$-\frac{1}{2}$ (Area of semicircle)$-$Area of curved figure $BEG$.
This gives $\frac{32}{5}-4\pi+8\tan^{-1}(\frac{4}{3})=\frac{32}{5}-4\tan^{-1}(\frac{3}{4})\approx1.252$
Flip the image by vertically.
It is not as simple as you think. Year six is probably high school when they can do geometry and calculus. I have done it using calculus and the area is as shown in the figure

| $\color{blue}{\text{Triangle Area }}$(the larger blue triangle) = $\color{blue}{\text{Sector Area }}$(of the circle) + one $\color{blue}{\text{Corner Area }}$+ $\color{red}{\text{x Area }}$ |
|---|
If radius (r) = 1
| Steps | Formulas | Values |
|---|---|---|
| 1. | $A_{\color{green}{\bigcirc}} = \pi r^2$ | $\pi (1)^2 = \pi \times 1 = \pi \approx 3.1416$ |
| 2. | $A_{\color{brown}{\square}} = \text{Side}^2$ | $2 \times 2 = 4$ |
| 3. | $A_{\color{blue}{\triangle}} = \frac{1}{2} \times \text{Base} \times \text{Height}$ | $\frac{1}{2} \times 2 \times 1 = 1$ |
| 4. | $A_{\text{corner}} = \frac{A_{\color{brown}{\square}} - A_{\color{green}{\bigcirc}}}{4}$ | $\frac{4 - 3.1415}{4} = 0.2146$ |
$A_{\text{corner}}$ is the area outside the circle but inside the square for a single corner only.
Step 5 – The BLUE Triangle | Find the $\alpha$
Using trigonometry, given that Opposite side (a) = 1 and Adjacent side (b) = 2
∴ $tan(\alpha)$ = 1/2 => $\alpha$ = $tan^{-1} \left( \frac{1}{2} \right)$ => $\alpha$ = 26.5650°
$\color{lightgray}{\boxed{\text{Hypotenuse } (c) \text{ is: } a^2 + b^2 = c^2 \Rightarrow 1^2 + 2^2 = c^2 \Rightarrow 1 + 4 = c^2 \Rightarrow \sqrt{5} = c \approx 2.236}}$
Step 6,7 – The ORANGE Triangle | Find the $\beta$ and Area $A_{\color{orange}{\triangle}}$
Intuitively analyze it, the Orange Triangle is Isosceles, and one of its angles is an alternate interior angle of $\alpha$.
∴ both of its Base Angles are 26.5650$^\circ$
∴ the Vertex Angle ($\beta$) = 180$^\circ$ - 26.565$^\circ$ - 26.565$^\circ$ $\approx$ 126.8700$^\circ$
Splitting the orange isosceles triangle from its center creates two equal right-angled triangles. By drawing a perpendicular from the vertex angle, or equivalently from the center of the circle to the base of the orange isosceles triangle, divide it into two congruent (or equal) right-angled triangles.
Now, consider The Orange Triangle as two right-angled triangles with the Hypotenuse (c) is equal to the radius (r) = 1 and $\alpha$ = 26.5650$^\circ$
Using Trigonometry
Opposite side (a) = c $\cdot sin$(26.5650$^\circ$) $\approx$ 0.4472
Adjacent side (b) = c $\cdot cos$(26.5650$^\circ$) $\approx$ 0.8944
Since, the area of The Orange Triangle is twice the sum of both halves
Area $A_{\color{orange}{\triangle}}$ = 2 $\times \frac{1}{2} \times b \times a$ $\Rightarrow$ 0.4472 $\times$ 0.8944 $\approx$ 0.4
Alternatively, a more common approach is to duplicate the orange isosceles triangle along its non radii side to form a parallelogram. The area of this parallelogram is given by
$A = r \times h$, where the height $h$ is $r \cdot \sin(2\alpha)$. The factor $2$ appears because the angle is also duplicated at this corner, angle $\beta$ doesn't have this issue. Taking half of this area gives the area of the orange triangle.
Step 8,9 – The Non-GREEN region of the Circle | Find Sector & Segment
Area of the minor sector of the circle using Vertex Angle ($\beta$)
$A_{\text{sector}} = \frac{A_{\color{green}{\bigcirc}}}{360} \times \beta$ $\Rightarrow$ $A_{\text{sector}} = \frac{3.1416}{360} \times$ 126.8700 $\approx$ 1.1072
By removing the orange triangle from this sector left with the area of the minor segment (or blue Segment)
$A_{\color{blue}{segment}}$ = $A_{\text{sector}}$ - $A_{\color{orange}{\triangle}}$ $\Rightarrow$ 1.1072 - 0.4 $\approx$ 0.7072
Step 10 – Find area X
$A_{\color{blue}{\triangle}}$ = $A_{\color{blue}{segment}}$ + $A_{\color{blue}{corner}}$ + $\color{red}{A}_{\color{red}{x}}$
$\Rightarrow$ $\color{red}{A}_{\color{red}{x}}$ = $A_{\color{blue}{\triangle}}$ - $A_{\color{blue}{segment}}$ - $A_{\color{blue}{corner}}$
$\Rightarrow$ $\color{red}{A}_{\color{red}{x}}$ = 1 - 0.7072 - 0.2146
$\Rightarrow$ $\color{red}{A}_{\color{red}{x}}$ = 0.0782
Note: ∵ r = 1, Ax = 0.0782. For r = 4 (diameter = 8), see the table below.
Summary
1. - Area of the circle
2. - Area of the circumscribed square
3. - Area of the blue right-angle triangle (quarter of the square)
4. - Area of the one Corner (quarter of the area of Square minus Circle)
5. - Angle α of the blue triangle using tan(α) where a=radius and b=diameter
6. - Angle β of the Orange Triangle, an isosceles triangle with two angles as α
7. - Area of the Orange Triangle calculated using two right-angled triangles
8. - Area of the minor sector using β
9. - Area of the minor segment (sector minus Orange Triangle)
10. - AreaX = area of Blue triangle - area of segment - area of Corner
JavaScript
const diameters = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]; // Example diameters
const calculations = [];
function calculateProperties(diameter) {
const radius = diameter / 2;
const areaCircle = Math.PI * Math.pow(radius, 2);
const areaSquare = Math.pow(diameter, 2);
const areaBlueTriangle = areaSquare / 4;
const areaCorner = (areaSquare - areaCircle) / 4;
const angleAlpha = Math.atan(radius / diameter) * (180 / Math.PI); // In degrees
const angleBeta = (180 - 2 * angleAlpha);
// Step 7: Calculate area of the Orange Isosceles Triangle using right-angled triangles
const x = radius * Math.cos(angleAlpha * Math.PI / 180);
const h = radius * Math.sin(angleAlpha * Math.PI / 180);
const areaHalfOrangeTriangle = 0.5 * x * h;
const areaOrangeTriangle = 2 * areaHalfOrangeTriangle;
// Step 8: Area of the minor sector (using Beta)
const areaMinorSector = (angleBeta / 360) * areaCircle;
// Step 9: Area of the minor segment (sector minus Orange Triangle)
const areaMinorSegment = areaMinorSector - areaOrangeTriangle;
// Step 10: AreaX = area of Blue triangle - area of segment - area of Corner
const areaX = areaBlueTriangle - areaMinorSegment - areaCorner;
return {
radius,
areaCircle,
areaSquare,
areaBlueTriangle,
angleAlpha,
angleBeta,
areaOrangeTriangle,
areaCorner,
areaMinorSector,
areaMinorSegment,
areaX
};
}
function printResults(results) {
console.log("Calculated Values:");
results.forEach((res, index) => {
console.log(Input Diameter: ${diameters[index]});
console.log(0. Radius: ${res.radius.toFixed(4)});
console.log(1. Area of Circle: ${res.areaCircle.toFixed(4)});
console.log(2. Area of Square: ${res.areaSquare.toFixed(4)});
console.log(3. Area of Blue Triangle: ${res.areaBlueTriangle.toFixed(4)});
console.log(4. Area of Corner: ${res.areaCorner.toFixed(4)});
console.log(5. Angle α: ${res.angleAlpha.toFixed(4)}°);
console.log(6. Angle β (Orange Triangle): ${res.angleBeta.toFixed(4)}°);
console.log(7. Area of Orange Triangle: ${res.areaOrangeTriangle.toFixed(4)});
console.log(8. Area of Minor Sector: ${res.areaMinorSector.toFixed(4)});
console.log(9. Area of Minor Segment: ${res.areaMinorSegment.toFixed(4)});
console.log(10. AreaX: ${res.areaX.toFixed(4)});
console.log("------------------------------");
});
}
diameters.forEach(d => calculations.push(calculateProperties(d)));
printResults(calculations);
Output:
| Property | Diameter=1 | Diameter=2 | Diameter=3 | Diameter=4 | Diameter=5 | Diameter=6 | Diameter=7 | Diameter=8 | Diameter=9 | Diameter=10 | Diameter=11 | Diameter=12 | Diameter=13 | Diameter=14 | Diameter=15 | Diameter=16 | Diameter=17 | Diameter=18 | Diameter=19 | Diameter=20 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Radius | 0.5000 | 1.0000 | 1.5000 | 2.0000 | 2.5000 | 3.0000 | 3.5000 | 4.0000 | 4.5000 | 5.0000 | 5.5000 | 6.0000 | 6.5000 | 7.0000 | 7.5000 | 8.0000 | 8.5000 | 9.0000 | 9.5000 | 10.0000 |
| Area of Circle | 0.7854 | 3.1416 | 7.0686 | 12.5664 | 19.6350 | 28.2743 | 38.4845 | 50.2655 | 63.6173 | 78.5398 | 95.0332 | 113.0973 | 132.7323 | 153.9380 | 176.7146 | 201.0619 | 226.9801 | 254.4690 | 283.5287 | 314.1593 |
| Area of Square | 1.0000 | 4.0000 | 9.0000 | 16.0000 | 25.0000 | 36.0000 | 49.0000 | 64.0000 | 81.0000 | 100.0000 | 121.0000 | 144.0000 | 169.0000 | 196.0000 | 225.0000 | 256.0000 | 289.0000 | 324.0000 | 361.0000 | 400.0000 |
| Area of Blue Triangle | 0.2500 | 1.0000 | 2.2500 | 4.0000 | 6.2500 | 9.0000 | 12.2500 | 16.0000 | 20.2500 | 25.0000 | 30.2500 | 36.0000 | 42.2500 | 49.0000 | 56.2500 | 64.0000 | 72.2500 | 81.0000 | 90.2500 | 100.0000 |
| Area of Corner | 0.0537 | 0.2146 | 0.4829 | 0.8584 | 1.3413 | 1.9314 | 2.6289 | 3.4336 | 4.3457 | 5.3650 | 6.4917 | 7.7257 | 9.0669 | 10.5155 | 12.0714 | 13.7345 | 15.5050 | 17.3827 | 19.3678 | 21.4602 |
| Angle α | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° | 26.5651° |
| Angle β (Orange Triangle) | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° | 126.8699° |
| Area of Orange Triangle | 0.1000 | 0.4000 | 0.9000 | 1.6000 | 2.5000 | 3.6000 | 4.9000 | 6.4000 | 8.1000 | 10.0000 | 12.1000 | 14.4000 | 16.9000 | 19.6000 | 22.5000 | 25.6000 | 28.9000 | 32.4000 | 36.1000 | 40.0000 |
| Area of Minor Sector | 0.2768 | 1.1071 | 2.4911 | 4.4286 | 6.9197 | 9.9643 | 13.5626 | 17.7144 | 22.4198 | 27.6787 | 33.4912 | 39.8574 | 46.7770 | 54.2503 | 62.2771 | 70.8575 | 79.9915 | 89.6790 | 99.9202 | 110.7149 |
| Area of Minor Segment | 0.1768 | 0.7071 | 1.5911 | 2.8286 | 4.4197 | 6.3643 | 8.6626 | 11.3144 | 14.3198 | 17.6787 | 21.3912 | 25.4574 | 29.8770 | 34.6503 | 39.7771 | 45.2575 | 51.0915 | 57.2790 | 63.8202 | 70.7149 |
| AreaX | 0.0196 | 0.0782 | 0.1761 | 0.3130 | 0.4891 | 0.7042 | 0.9586 | 1.2520 * | 1.5846 | 1.9562 | 2.3670 | 2.8170 | 3.3060 | 3.8342 | 4.4015 | 5.0080 | 5.6535 | 6.3382 | 7.0620 | 7.8249 |