2

I have a matrix $A$ of size $n \times n$ defined as $$a_{ij} = \frac{1}{i+j-1}$$ Where $a_{ij}$ is the $i^{th}$ row, $j^{th}$ column element of the matrix. So, $1 \leq i \leq n$ and $1 \leq j \leq n$.
Is this matrix, Positive Definite or Positive Semi-Definite? How to prove it?

0 Answers0