I'll give answer that doesn't utilize the derivative of $\tan^{-1}x$. Consider the result
$$\tanh^{-1}x=-i\tan^{-1}ix$$
$$\implies\frac12\ln\left(\frac{1+x}{1-x}\right)=-i\tan^{-1}ix$$
Now, we can use the Maclaurin expansion for $\ln(1\pm x)$ to compute that of $\tan^{-1}x$. The series obtained so will converge for $x\in(-1,1]\cap[-1,1)=(-1,1)$ since $\ln(1+x)$ converges for $x\in(-1,1]$. It may or may not converge at $x=\pm1$ since at these points as of now, both sides of the above identity become undefined. So, this case needs to be investigated separately.
$\textbf{Case 1, $x\in(-1,1)$:}$
$$-i\tan^{-1}ix=\frac{\ln(1+x)-\ln(1-x)}2$$
$$=\frac{\left(x-\frac{x^2}2+\frac{x^3}3-\frac{x^4}4+\frac{x^5}5\cdots\right)-\left(-x-\frac{x^2}2-\frac{x^3}3-\frac{x^4}4-\frac{x^5}5\cdots\right)}2$$
$$=x+\frac{x^3}3+\frac{x^5}5\cdots$$
Replacing $x$ with $-ix$,
$$\tan^{-1}x=i\left(-ix+\frac{ix^3}3-\frac{ix^5}5\cdots\right)$$
$$=x-\frac{x^3}3+\frac{x^5}5-\frac{x^7}7\cdots$$
$\textbf{Case 2, $x=\pm1$:}$
Let the value of the above series at $x=1$ be $S$:
$$S=1-\frac13+\frac15-\frac17\cdots$$
By the alternating series test, $S$ converges. Similarly, the value of the series of $\tan^{-1}x$ also converges for $x=-1$. Alternatively, this can be explained by the fact that $\tan^{-1}x$ is an odd function.
Hence, the power series expansion for $\tan^{-1}x$ converges $\forall x\in[-1,1]$.