I have computed the singular value decomposition (SVD) of the following matrix $A$.
$$ {\bf A} := \begin{bmatrix}1&2\\0&1\\-1&0\\\end{bmatrix} = \underbrace{\left[\begin{matrix}0 & \sqrt{\frac 5 6} & \frac{1}{\sqrt 6} \\ \frac{1}{\sqrt 5} & \sqrt{\frac 2 {15}} & -\sqrt{\frac 2 3} \\ \frac{2}{\sqrt 5} & -\frac{1}{\sqrt 30} & \frac{1}{\sqrt 6}\end{matrix}\right]}_{=: {\bf U}} \underbrace{\left[\begin{matrix}1 & 0 \\ 0 & \sqrt 6 \\ 0 & 0\end{matrix}\right]}_{=: {\bf \Sigma}} \underbrace{\left[\begin{matrix}-\frac{2}{\sqrt 5} & \frac{1}{\sqrt 5} \\ \frac{1}{\sqrt 5} & \frac{2}{\sqrt 5}\end{matrix}\right]^\top}_{=: {\bf V}^\top} $$
The singular value decomposition can be used to obtain the best rank $p\leq r $ approximation of a matrix $A$, by only keeping the first $p$ terms. Find the best rank-one approximation of the matrix $\bf A$. How can I find the best rank-one approximation of the matrix $\bf A$?